This is a survey of the main results on the integration of the Einstein equations and the problems which remain open.

## 5.1 The Space-Time Manifold

In any relativistic theory of the gravitational field, the main element is a differentiable manifold of four dimensions, the space-time . To be precise: I assume that this differentiable structure is “ , piecewise .” This means that in the intersection of the domains of two admissible systems of local coordinates the local coordinates of a point for one system are functions of class , i.e., possess continuous derivatives up to second order, with non-vanishing Jacobian, of the coordinates of the point in the other system. Third and fourth derivatives also exist, but are only piecewise continuous.

On we have a hyperbolic normal Riemannian metric

5.1 |

which is everywhere “
, piecewise
.” This metric is said to be *regular* on
. Note that the manifolds which admit hyperbolic metrics are precisely those on which there exist vector fields without zeros. Such a manifold admits global systems of time-like curves, but generally does not admit global systems of space-like hypersurfaces.

We suppose that no further specification of the differentiable structure of the manifold or of the metric has any physical meaning.

For the study of global problems assumptions belonging to the differential geometry in the large are often needed. Frequently is identified with a topological product , being the real numbers, where straight lines are time-like curves and thus trajectories of a unitary vector field . The space sections defined by are then generally either closed manifolds or complete Riemannian manifolds for the metric defined on them by

5.2 |

moreover, in this case admits a Minkowskian asymptotic behavior at infinity.

The problem whether these assumptions are necessary or sufficient is open.

## 5.2 The Cauchy Problem for the Gravitational Field

In general relativity the metric satisfies the Einstein equations:

5.3 |

where the energy-momentum tensor is piecewise continuous. It defines the sources of the field. In the regions where we have the “exterior case.”

Let
be a local hypersurface of
which is not tangent to the cones
. If
defines
locally, we have
. The Einstein equations can then be written as^{1}

5.4 |

5.5 |

where
and
are known functions on
if we know the values of the potentials
and their first derivatives (“Cauchy

Eq.(5.5) links the Cauchy data to the sources. Eq.(5.4) gives the values on
of the six second derivatives
which I have called the *significant derivatives*. The four derivatives remain unknown and may be discontinuous at
. But, according to our differentiable structure, these discontinuities have no physical or geometrical meaning. We grasp here the connection between the covariance of the formalism and the assumptions on the structure.

From Eq.(5.4) one sees that the significant derivatives for
can have discontinuities only if
is tangent to the fundamental cones, or if the energy-momentum tensor is discontinuous at
. Gravitational waves

5.6 |

(WHEELER*radiation* does or does not exist was aired thoroughly in later sessions.) Gravitational rays are defined as the characteristics of
, or as the singular geodesics of the metric.

In the hydrodynamic interior case the exceptional hypersurfaces are (1) the gravitational waves,

## 5.3 Local Solutions for the Exterior Case

In the exterior case,
, the system of Einstein equations has the involution property:

**1**The search for Cauchy data satisfying the system
on
. This is the *problem of the initial values*.

**2**The *evolutionary problem* of integrating Eq.(5.4) subject to these Cauchy data.

Assuming only differentiability, Mme. Fourès

## 5.4 The Problem of the Initial Values

This, most interesting, problem is simple if is a minimal hypersurface. If

5.7 |

we take

5.8 |

and we obtain for the exterior case

5.9 |

where is the operator of covariant differentiation, and the scalar curvature of . If we set

5.10 |

where we assume the metric to be known on , then it is possible to introduce the functions

5.11 |

For these functions a very simple system of equations holds:

5.12 |

and the elliptic equation:

5.13 |

The Dirichlet problem

Recently Mme. Fourès

It would be important to obtain new global theorems for this problem, currently perhaps the most important problem of the theory.

## 5.5 The Cauchy Problem for the Asymmetric Theory

The Cauchy

On the differentiable manifold we have:

**1**An asymmetric tensor field
of class “
, piecewise
,” with a non-vanishing determinant
, the associated quadratic form defined by
being hyperbolic normal.

**2**An affine connection of class “
, piecewise
;”
is the torsion vector of the connection.

If we substitute into this connection the connection
without torsion vector, which admits the same parallelism, the field equations deduced from the classical variational principle

5.14 |

where is the Ricci tensor of . In addition we have a normalization condition for :

5.15 |

The Cauchy

• *(a)*: If
we have the cone

5.16 |

where is dual to .

• *(b)*: If
we have the cone

5.17 |

where is dual to .

If the skewsymmetric part of
is small compared to the symmetric part, then
contains
.
itself has no wave properties in the unified field theory.

The evolutionary problem of the asymmetric theory remains unsolved.

## 5.6 Global Solutions and Universes

I now return to general relativity. The main question of the theory is the following: When is a gravitation problem effectively solved?

A model of the universe - or shortly, “a universe” - is a with a regular metric satisfying the Einstein equations and certain asymptotic conditions. When is discontinuous through a hypersurface we assume that is always “ , piecewise ” in the neighborhood of . The joining of the different interior material fields with the same field causes the interdependence of the motions, and the classical equations of motion are due to the continuity through of the four quantities

5.18 |

In this view the main problem is to construct and study universes. This being a hyperbolic non-linear global problem, it is very difficult to do this. Clearly global solutions of the problem of the initial values would be very helpful here.

Another approach might be the study of some elementary global solutions of the Einstein equations. It appears that such solutions are connected with the solutions with singularities introduced by various authors.

## 5.7 Global Problems

This view of the universe leads us to the following question: Is it possible to introduce in a universe new energy distributions, the interior fields of which are consistent with the exterior field of the universe? Furthermore, if a universe model is defined by a purely exterior field, regular everywhere, is the universe empty and thus locally flat?

The regularity problem is the study of the exterior fields regular everywhere under some general topological or geometrical assumptions. Good results are known only in the stationary case. We assume , and we use the explicit assumptions made at the beginning of this survey. Then we have the following results:

An exterior stationary field which is regular everywhere is locally flat

(a) if is compact, or

(b) if is complete and has a Minkowskian asymptotic behavior.

In a stationary universe the exterior field extended through continuity of the second derivative into the interior of the bodies is singular in the interior.

A stationary universe which admits a domain surrounding infinity and which in this domain has a Minkowskian asymptotic behavior and for which the streamlines are time lines, is static. There exist space sections orthogonal to the time lines.
This is of interest in the Schwarzschild

Much less is known in the non-stationary case, which is of course more interesting. Concerning the regularity problem,

However, the results on the problem of the initial values give new theorems under the following assumptions:

It is possible to diagonalize the matrix which defines the second fundamental quadratic form of and there exist foliations of by the corresponding system of curves, that is to say by curvature lines.

has a flat asymptotic behavior.

The tensor has a summable square on .

If these assumptions are satisfied on and also on the sections corresponding to arbitrarily small , the universe is static and thus locally flat.

***

MISNER

“This comes about because, according to work of ^{2} the Einstein-Maxwell equations can be interpreted as an *already unified* field theory. ^{3} have been important to us. They assure us that if we specify certain initial conditions we shall have non-singular solutions at least for a short time. We are interested in finding solutions to these initial value equations and seeing what they lead to, whether they indicate any possibility of constructing particles from these electromagnetic and gravitational fields. Notice that even though one speaks of the electromagnetic field here, one does not really have to, since one can use the ideas of Rainich to give a complete description of the electromagnetic field in terms of metric quantities alone. The influence of the electromagnetic stress energy tensor upon the gravitational field is sufficiently specific so that from the curvature quantities one can work backwards to the electromagnetic field and have a purely metric description of both electromagnetism and gravitation.

“We have studied a certain class of solutions to the problem of initial values. These solutions are global but by no means the most general. They serve as examples. These solutions are always continuous and instantaneously static. We find that there exist exact solutions of the Einstein-Maxwell equations for which the fields on a certain surface are given by:

5.19 |

5.20 |

5.21 |

5.22 |

where satisfy

5.23 |

This metric together with the electric field
gives a solution of the initial value equations. In the neighborhood of the surface
we have a solution of the time-dependent equation but do not know what it is. Perhaps one should use a high speed computing machine.

5.24 |

where

5.25 |

These functions appear to contain singularities, but they really do not. This brings us into the study of the topology of this situation. The point at which the metric seems to become singular can be thrown away. This is consistent with the requirement of completeness, but would not be consistent if the point which is thrown away were one at which the metric did not become singular. A picture can be drawn to indicate what the space so obtained looks like. Near the point the space, which is flat further away, curves and flares out and goes over into another roughly flat portion like this:

Fig. 5.1

We have here as many regions where the space is asymptotically flat as we have particles. The next problem is to put these portions together. One should then try to construct the initial values which would give rise to the wormhole

Fig. 5.2

“One additional advantage of the solutions exhibited here over introducing point singularities into the theory is that by using Lichnerowicz’s regularity conditions you eliminate automatically all negative masses, mass dipoles and higher multipoles. It also, unfortunately, implies that for any particle or cluster of particles described by these deformities the total charge and mass have a ratio
, while for an electron in these units, where
,
. The reason for this too large mass, for a given electron charge, is that you don’t have enough of a cut-off for the electromagnetic mass. Perhaps one might hope that quantum mechanics might help here. In any event, we have here strong indications that the Einstein-Maxwell theory is a good model for a unified field theory.

In the discussion, PIRANI

BERGMANN^{4}

DE WITT

5.26 |

Fig. 5.3: Einstein-Rosen Topology

MlSNER then added some remarks on global solutions.