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Commentary on al­Hawārī’s Commentary

59.1 [Introduction]

A copyist wrote the introductory words “In the name of God…said:”. Al­Hawārī first
praises God and Muḥammad, and then Abū Yaʿqūb, Marinid ruler of Morocco from 1286
to 1307. Last, praise is given to Abū Muḥammad ʿAbdallah Ibn Abū Madyan, an intellec­
tual and an important government minister from 1302 to 1307.

59.15 Al­Hawārī asked permission from Ibn al­Bannāʾ to write this commentary, which
Ibn al­Bannāʾ granted. The latter had already written a commentary on his own book, titled
Lifting the Veil from the Face of the Operations of Arithmetic. What the Condensed Book
and Lifting the Veil lacked, according to al­Hawārī, were ample numerical examples of the
rules.

61.1 Four of the manuscripts we consulted show the phrase “may God forgive him”,
which agrees with manuscripts of the Condensed Book. The Medina manuscript has in­
stead “may God preserve his splendor, his reputation, and keep his memory whole”. This
version implies that Ibn al­Bannāʾ is already deceased.

61.9 Part I. Known numbers.

63.1 Chapter I.1. Whole numbers.

65.1 Section I.1.1. The divisions of numbers and their ranks.

65.2 Euclid defined “number” in the beginning of Book VII of the Elements as “a
multitude composed of units”.1 Because these units are indivisible, Euclidean numbers
are restricted to positive integers. This is in contrast with the numbers of practical Arabic
arithmetic, which include fractions and irrational roots. Al­Fārisī, a Persian contemporary
of Ibn al­Bannāʾ, gives the definition of number of “the arithmeticians” as “a quantity
you obtain from one by repetition or partition or both, and it is clear by this meaning that
the type is divided into whole numbers and their fractions”.2 Ibn a­Bannāʾ condenses and
combines the Greek and Arabic definitions: “A number is a collection of units, and it is
divided according to how it is produced into two kinds: whole and fractional”. Later, he
made a philosophical apology for fractional numbers in Lifting the Veil in which he claimed
that Euclid’s definition is not really a definition at all, but merely an expression of “what

1 Translated in (Euclid 1956, vol. 2, 277).
2 (al­Fārisī 1994, 71.8).
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is in the soul”.3 Later commentators entered into the discussion, including al­Mawāḥidī
(ca. 1382), Ibn Qunfudh (1370) and Ibn Ghāzī (1483).4

Al­Hawārī will explain the various ways of representing fractions in Chapter 2, beginning
at 131.1. The examples he gives here are, in the notation described later in the book, 23 ,4 29 3 (equivalent to our 827 ), 25 2: (our 2447 ), 7 ͽ 88 ͽ 9 (our 45 ), and 2: ϊ67 (our 2429 ).5

65.6 Reading right to left, the first place is the units place. Zero was not considered
to be a digit, but was instead a sign indicating an empty place in the representation of a
number.

65.10 Evenly­even numbers are the powers of two starting with 2, and evenly­odd num­
bers are the double of an odd number Ӓ 4. Evenly­evenly­odd numbers are numbers in
between: they are the product of some power of two Ӓ 5 by an odd number Ӓ 4. The clas­
sification of even numbers into evenly­even, evenly­odd, and evenly­evenly­odd comes
from Greek number theory. These definitions are taken from Nicomachus’s Arithmetical
Introduction, translated into Arabic by Thābit ibn Qurra in the late ninth century.6

Euclid’s definitions of these terms in Elements Book VII are different, and do not corre­
spond to the standard Greek definitions. He defines a number to be “even­times even” if
it is the product of two even numbers, and “even­times odd” if it is the product of an even
number by an odd number. This way a number can be both, like 39 > 25 Բ 3 > 8 Բ 5. Also,
Euclid has nothing corresponding to the “evenly­evenly­odd”.

Note the wording “each of the sixteens”. When we take half of 32, the result is a single
number, 16. For al­Hawārī, halving 32 means to partition it into a pair of 16s. Numbers in
medieval Arabic arithmetic admit multiplicity. See our comments at 163.2 below.

66.7 The word we translate as “prime” is awwal. This word also means “first, foremost”,
etc., and so is close to our “prime” or “primal”. Ibn al­Bannāʾ and al­Hawārī also use the
word aṣamm (“deaf”) to mean “prime”, though other arithmeticians, like al­Uqlīdisī and
al­Baghdādī, use that word to mean “irrational”. The use of the word “deaf” for “prime”
has to do with Arabic ways of expressing fractions, which we explain below at 134.2.
We describe the words for “irrational” at 163.2. A prime number can also be called basīṭ
(“simple”), in contrast to composite numbers, which are formed frommore than one prime.

An “oddly­odd” number is the product of two odd numbers, both Ӓ 4. This time Eu­
clid, not Nicomachus, is probably the source. Definition VII.10 in Elements reads “An
odd­times odd number is that which is measured by an odd number according to an odd
number”, i.e., it is the product of two odd numbers. Nicomachus has no such definition.

3 (Ibn al­Bannāʾ 1994, 207); (Aballagh 1988, 142­143).
4 (Aballagh 1988, 142­143).
5 See below at 86.1 for an explanation of the “ ϊ”.
6 Book I, Chapters 7­10 (Nicomachus 1959, 19­28); (Nicomachus 1938, 190­201). Ibn al­Bannāʾ’s terms
are precisely those in Thābit ibn Qurra’s late ninth century Arabic translation of Nicomachus’s work (Nico­
machus 1959, 20.18). D’Ooge translated Nicomachus’s Greek terms as “even­times even”, “even­times
odd”, and “odd­times even”.
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He calls composite odd numbers simply “composite” (sýnthetós, translated as murakkab
by Thābit).7

The word for “composite” in Ibn al­Bannāʾ and al­Hawārī is similarly murakkab, or some
related form. (Sometimes we translate these words as “composed” or “composition”.) The
associated verb rakiba serves to multiply the factors together to produce the number com­
posed of those factors. See below at 196.16 and 211.13 for related forms of this word in
the context of proportions and algebra.

66.13 Al­Hawārī presents another classification of numbers. All numbers are either
prime or composite, and composite numbers come in three types: (a) perfect squares, (b)
products of two or more different numbers, and (c) perfect cubes. He does not mention
that some numbers fall into more than one category. The number 36, for example, is a
square (73) and a product of two different numbers (5 Բ :). The classification of composite
numbers is explained for even numbers starting at 66.17, then again for odd numbers at
67.17.

We have translated the adjective majdhūr as “has a root”. A number “has a root” if its
square root is rational, like 9 or 2736 . We could have translated it as a single word like
“rootable”, but that seemed too awkward. Later, first at 163.14, we will encounter the
same concept for ranks. A rank is a majdhūra if a number of that rank can have a root.
This is true for the units, the hundreds, ten thousands, and every other rank after that.

66.17 The words ḍilʿ (“side”), musaṭṭaḥ (“surface” or “plane”), and murabbaʿ
(“square”) are geometric terms used in arithmetic in a metaphorical sense. They derive
from the corresponding Greek words in the number theory books VII to IX in Euclid’s
Elements, and are first encountered in Definition 16 at the beginning of Book VII. They
do not imply any underlying geometric conception of number.

67.12 The word mukaʿʿab can mean a geometrical cube, or, as here, it can be an arith­
metical termmeaning “[perfect] cube”, like 27 or 9236 . The related word kaʿb in the present
passage means “cube root”, but it is also the name given to the third power of the unknown
in algebra (first encountered at 221.1), which we translate as “cube”. The meanings are
clear by the context.

68.11 Perhaps al­Hawārī is thinking of the fact that “root” and “cube root” are partic­
ular to dimensions 2 and 3 respectively, while “side” is the term for the ৎ­th root for any
particular ৎ.
To “decompose” (ḥalla) a number means to express it as the product of two or more num­
bers. The opposite operation is to “compose” (rakiba) two or more numbers into their
product.

Ibn al­Bannāʾ and al­Hawārī explain a rule for extracting square roots numerically be­
ginning at 166.1. Similar rules for extracting cube roots were well known in their time,
but al­Hawārī remarks here that going through the work is “of little benefit”. Instead, he
briefly explains how to find the cube root of a perfect cube by factoring. For example, to
7 (Nicomachus 1866, 27.12); (Nicomachus 1938, 202, Chapter XII); (Nicomachus 1959, 30.4).
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find the cube root of 216, one can break it down as 4 · 83, then to 4 · : · 9, and then to3 · 3 · 3 · 4 · 4 · 4. Then one can piece it together as 7 · 7 · 7, so 6 is the cube root.
68.18 Ibn al­Bannāʾ uses a few different words to explain the base ten system for writing
numbers with the Indian figures:

• Rank (martaba). This word indicates the position of a digit in a number. The Arabic
word suggests a ranking of the digits, as al­Hawārī explains at 68.18. Ranks are
sometimes designated by ordinal numbers, like first, second, third, etc., or by the
names “units”, “tens”, “hundreds”, etc. For example, the “7” in 17,285 is the fourth
rank, or the rank of thousands.

• Place, position (manzila). Likemartaba, this word indicates the position of a digit in
a number. But here the Arabic word evokes the image of a place or a home, “because
the numbers reside in them”, as remarked at 68.18. Again, the “7” in 17,285 is in the
fourth place, or the thousands place. Sometimes the word mawdhiʿ, also meaning
“place”, is used with the same meaning (at 108.12, 109.4).

• Index (uss). This is the number indicating the position of the digit. The index of
units is 1, of tens is 2, of hundreds is 3, of thousands is 4, etc. The Arabic word uss
is used today to indicate the exponent in mathematics. We could have translated it
as “power”, but the numbers would be off by one. For us 10 is the first power of ten,
while the corresponding index is 2. Later, in the chapter on algebra, the word uss is
used to mean the power of the unknown, and there it matches our exponents. The
uss of the second degree unknown is 2, for instance. Thus we translate it as “power”
there.

• Name (ism). The name of a digit is “units”, “tens”, “hundreds”, “thousands”, “ten
thousands”, etc., depending on its place. For instance, the name of the 7 in 17,285
is “thousands”.

• Species (nawʿ or jins). There are three species of number: units, tens, and hundreds.
These are repeated for the thousands, for the thousand thousands (i.e., millions),
etc. So the species of the “7” in 17,285 is units, and the species of the “1” is tens.
The same two words nawʿ and jins are used for the different “species”, or what we
would call the powers of the unknown, in algebra.

At 68.18 Ibn al­Bannāʾ limits “rank” and “place” to units, tens, and hundreds, these being
repeated for the thousands, thousand thousands, etc. But at 70.2, 70.23, 72.4, and 105.1
al­Hawārī regards these terms as progressing indefinitely instead of repeating.

One word absent in the book is ḥarf, meaning “digit”. Other medieval books, such as
Principles of Indian Reckoning ofKūshyār ibn Labbān, use ḥarf tomean “digit”. Theword
is also used by our authors, but with the meanings of “letter”, “particle”, or “conjunction”.
In many instances, beginning in the section on addition, we translate martaba as “digit”.
This is not technically correct since the rank is a location and the digit is a number that is
placed there, but it makes the reading easier. We also often translate manzila as “digit”,
too, first at 74.9; and in the passages at 111.7 and 112.5, we render ʿadad (“number”) as
“digit” where appropriate.
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There were several Arabic words that played the roles of our words “type”, “kind”,
“species”, “division”, or “variety”. The ones appearing in our book are nawʿ, jins, ḍarb,
qism, and ṣanf. These words were more or less interchangeable in Arabic mathematics,
whether for types of number, of fraction, of addition (and other operations), of proportion,
of equation, etc. It is partly from the ways numbers were classified, and from the
descriptions of the two types each of multiplication and division (95.3, 117.9), that we
can recognize numbers in Arabic mathematics as being numbers of something. See our
commentary at 95.3 below.

69.2 By the thirteenth century CE, and perhaps much earlier, two distinct styles of
writing the Indian numerals had developed in the Islamic world.8 The Western forms,
written in the Maghreb and al­Andalus, ultimately led to the European forms 123456789
and 0, while the Eastern forms led to the current Arabic forms of the numerals, ۱۲۳٤٥٦۷۸۹
and ۰. There are of course variations within each style.

Naturally, al­Hawārī wrote the Western forms, and it is these that are described by the
poet. The poem makes use of the similarities between the shapes of the numerals and the
shapes of letters of the Arabic alphabet to teach the student how to write the numerals. The
copyist of the Medina manuscript was not familiar with the Western way of writing the
numerals, so he followed the instructions in the poem to the letter (pun intended). Figure 1
below shows the numerals 987654321, with the Eastern forms written underneath.

Figure 1: Digits in the Medina MS.

Starting from the right, the “1” looks like the letter alif, which is just a vertical line. The “2”
is written as the letter ḥā, and the “3” is the ligature of the letters ḥā and jīm, pronounced
ḥajja as if it were a word. The “4” should be the ligature of ʿayn and wāw, pronounced
ʿuw, but the copyist forgot to add thewaw. See below in Figure 2 for the “4” in the Istanbul
manuscript. The “5” is shown as an ʿayn alone, so it looks like the “4” in this figure. The
“6” is shaped like the letter hā (the copyist failed to close the loop), the “7” like an anchor,
and the “8” is said to be a couple zeros (small circles), one above the other, connected by a
vertical line (the alif ). The line is not evident in the figure, and is generally not written at
all. The Tunis manuscript writes the “8” the normal way, as , but just below it follows the

instructions with the vertical line: (and afterward the copyist wrote the Eastern forms
of the digits). Finally, the “9” is written as the letter wāw.

The copyist of the Istanbul manuscript was already familiar with theWestern forms. These
are shown in Figure 2.

8 (Kunitzsch 2003).
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Figure 2: Digits in the Istanbul MS.

For comparison, Figure 3 shows the number 9367184225 from the same manuscript, with
the Eastern forms above the Western forms. The Eastern “5”, on the right in black, is
mistakenly written as a “4”.

Figure 3: More digits, from the Istanbul MS.

70.2 There were no words for “million”, “billion”, etc. in Arabic arithmetic. They wrote
instead “thousand thousand”, “thousand thousand thousand”, etc.

70.8 The places/ranks of a number were spoken in Arabic in a different order than they
are in English. We preserve the Arabic order in our translation from here to the end of
the chapter (through page 72 of our edition) to give the reader a feel for how the numbers
were expressed.

Arabic numbers less than one hundred were spoken with the units first, like “four and
sixty” instead of “sixty­four”. So “four and sixty thousands” is 64,000, and “four and
sixty thousands and three hundred thousands” is 364,000, though this was often spoken
as “three hundred thousands and four and sixty thousands”. In Arabic, the hundreds (like
“three hundred” and “five hundred”) are compound words, so we translate “three hun­
dred” instead of “three hundreds”. The word for "Thousands" is stated separately from its
number, and is made plural when there is more than one of them. They wrote “a thousand”
for one, and “two thousands”, “three thousands”, etc. for more than one.

The plural becomes more complicated when we get to the millions. When there are more
than ten of something, the plural form of an Arabic noun is written the same as the singu­
lar form. So we read “four trees”, but fourteen of them reads like “fourteen tree”. Thus,
what appears to be “ten thousands thousand” should be understood as “ten thousands thou­
sands”. If there are 10,000 of the second word “thousand”, it must be plural.

Also, where we say “one hundred”, “one thousand”, etc., in Arabic the “one” is not written.
They expressed these numbers with the implied indefinite article, as “[a] hundred”, “[a]
thousand”, etc.

71.12 Subsection on knowing the index of the repeated number.
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72.1 A 1, 2, or 3 is needed for the rule, so if the number is divisible by three, then three
is regarded as the remainder.

73.1 Section I.1.2. Addition.

73.2 The act of adding two numbers, according to al­Hawārī’s definition, should result
in a single expression. Sometimes, though, the sum can only be expressed with more than
one expression. For example, adding 978 to 456 yields one expression, 1434 (at 75.9),
as does adding “a root of two to a root of eight” (҇3 , ҇9), which gives “a root of 18”
(҇29, at 179.16). The example at 180.10 shows an addition that results in two expressions:
adding a root of three (҇4) to a root of fifteen (҇26) can only be expressed as “a root of
three and a root of fifteen”. We write this as ҇4 , ҇26, but as we explain below at 219.1,
the operation of addition is not inherent in this composite expression. The current section
covers addition of whole numbers, which always results in one expression.

Four different verbs are used in the book to mean “to add”: jamaʿa, ḥamala, zāda, and
ḍāfa. Lane’s definitions of jamaʿa begin “to collect; bring, or gather together”.9 He starts
off his definitions of zāda with “to increase, or augment, or grow”, while the various
meanings of ḥamala begin with “to bear it, carry it, take it up and carry it, convey it, or
carry it off or away”. Lane gives no definition of ḍāfa that relates to addition, but Wehr
has “to be added, be annexed, be subjoined, be attached”.10 There are similar variations
for words meaning “exceed”/“surpass” (zāda, faḍala, ʿalā) and “sum” (majmū and related
forms, jumla).

Ibn al­Bannāʾ covers five types of addition in the Condensed Book:

1. Adding numbers with no known relation. He covers the basic process of adding
numbers in Indian notation beginning at 74.9.

2. Adding sequences of numbers with a known disparity, at 76.7.
2a. In one kind of disparity, the ratio between consecutive terms is constant.
2b. In the second kind, the difference between consecutive terms is constant.

3. Adding consecutive numbers, their squares, and their cubes, at 79.13.

4. Adding consecutive odd numbers, their squares, and their cubes, at 80.5.

5. Adding consecutive even numbers, their squares, and their cubes, at 80.20.

The rules for summing finite series, extending from 76.7 to 82.4, are (mostly) originally
Greek in origin, but were probably borrowed from some intermediate Arabic source.11

73.7, 73.17 Ibn al­Bannāʾ’s distinction between a disparity in quantity (kamm), in which
the difference between consecutive terms is constant, and a disparity in quality (kayf ), in

9 (Lane 1863–1893, 455). Lane gives definitions in third person singular perfect tense. Here and elsewhere
I have changed them to the infinitive.
10 (Lane 1863–1893, 1275, 646), (Wehr 1994, 640).
11 (Saidan 1996, 341ff).
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which the ratios of consecutive terms is constant, comes from Nicomachus.12 The terms
“quantity” and “quality” appear again in the passage at 92.17, but with different meanings.

The Arabic for “geometric progression” is nisba handasiyya, literally “geometric rela­
tion”. Ibn al­Bannāʾ writes “known disparity” instead of “known relation” because the
word nisba (“relation”) might imply the geometric progression. See below at 193.1 for
more on the word nisba.

74.17 Al­Hawārī gives two examples of the first type of addition, starting with the
addition of 4043 to 2685. First, the two numbers are written on two lines, like this:

4 0 4 3
2 6 8 5

Then the units 3 and 5 are added, and the result is put above (we put changes from the
previous figure in red):

8
4 0 4 3
2 6 8 5

The tens are next. Because 5 , 9 > 23 has two digits, 1 is added to the 6 in the hundreds
place of the lower number, and a 2 is put above the tens place:

2 8
4 0 4 3
2 7 8 5

There is nothing to add to the 7, so 7 is put above the hundreds place:

7 2 8
4 0 4 3
2 7 8 5

Finally, the thousands place is 6, from the sum of 2 and 4. The answer is 6,728:

6 7 2 8
4 0 4 3
2 7 8 5

12 In the Arithmetical Introduction, Book II, Chapters 20­23 (Nicomachus 1938, 263, 266­70).
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Because this method requires erasing and replacing, it was intended to be worked out on
a dust­board or wax tablet, and not with ink.

Operating on zero

The rules for operating on numbers expressed in Indian notation call for the addition,
subtraction andmultiplication of digits, and sometimes one or both of these digits is a zero.
The zero signifies a place where there is no number at all, so we should ask what it meant to
operate on it. For this we need to understand that the operations themselves were thought
of in a more material sense than our binary operations on abstract sets. Even the notion
of a set is a modern one – there was no word for “set” in Greek, Latin, Arabic, Sanskrit,
or medieval Italian. Premodern mathematicians, Europeans and Indians included, had no
concept of a set as an object.

Addition for al­Hawārī was not an operation on R+ satisfying the commutative and as­
sociative axioms. It was simply the appending of a number with another number, or the
gathering of numbers together, whichwere all regarded as amounts of something (dirhams,
men, hours, etc.). To add five to three was like combining the five silver dirhams in one
purse with the three silver dirhams in another purse, or like extending a length of five
adhruʿ by three more adhruʿ, or like adding three mathāqīl of grain to five mathāqīl. Not
even Euclid found it necessary to provide a definition for addition conceived like this,
though some Arabic arithmetic books, al­Hawārī’s included (at 73.2), characterize the op­
eration.

For the operation of addition, Ibn al­Bannāʾ provides a special instruction when there is a
zero present (74.9): “Then you add each digit of one of the addends to its counterpart in the
other. If there is no counterpart, then the answer is the addend, as if it had a counterpart”.
Al­Hawārī follows this rule in the present calculation: “Nothing corresponds to the seven
in the upper line, so it is considered to be the sum of that rank and that of its counterpart as
if it had something”. Adding nothing to 7 to get 7 does not mean that 0 assumes the role of
an operable quantity. Instead, no addition takes place at all. Think of it like combining the
money in two purses: one with 7 dirhams and the other empty. There is no act of combining
to perform. Subtraction works similarly. In the passage at 83.19 al­Hawārī is faced with
the subtraction of 0 from 9: “So we subtract this nothing of the minuend from the nine of
the subtrahend, leaving nine”. No subtraction takes place when taking nothing away from
an amount, so it leaves the amount unchanged.

Multiplication by zero is explained in the passage at 114.4: “multiplying the number by
the zero or the zero by the number is identical. It comes from voiding the number or du­
plicating zero. Neither of these gives a number, so its sign is always a zero”. The word
behind “voiding” (taṣfīr) is related to the word for “zero” (ṣifr). The former could have
been translated as “emptying” or “zeroing”, and “zero” could be replaced with “noth­
ing”. This duplication conforms to the standard definition of multiplication, given by Ibn
al­Bannāʾ at 95.2: “Multiplication consists of the duplication of one of two numbers by
however many units are in the other”. Duplicating nothing a number of times surely gives
nothing, so the multiplication makes sense even if zero, being nothing, is not a number.

See the passages in the translation at 83.19, 84.13, 90.7, 90.18, 123.3, and 215.14 for other
operations with zero and/or nothing.
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75.9 Al­Hawārī’s second example shows addition starting from the highest power term.
He adds 978 to 456, first writing one above the other as before:

9 7 8
4 5 6

Working from the hundreds place, : , 5 > 24, so 13 is placed above:
1 3

9 7 8
4 5 6

Next, 8 , 6 > 23, so a 2 is put above the 7, and 1 is added to the 3 next to it:
1 4 2

9 7 8
4 5 6

Finally, 9 , 7 > 25, so the 4 is put above the 8, and 1 is added to the 2 next to it to get the
answer, 1,434:

1 4 3 4
9 7 8
4 5 6

76.7 For the second type of addition, Ibn al­Bannāʾ works with the famous chessboard
problem. In some books, a grain of wheat is placed in the first square, two grains in the
second, four in the third, etc. Ibn al­Bannāʾ simply places numbers in the squares, as did
Abū Kāmil when he wrote about it in the late ninth century CE at the end of his Book
on Algebra.13 A 1 is placed in the first square, a 2 in the second, a 4 in the third, and
continuing so that each square has double the previous square, like this:

128 64 32 16 8 4 2 1

2565121024204840968192…

13 (Abū Kāmil 1986, 218); (Abū Kāmil 2012, 725).
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Ibn al­Bannāʾ gives the rule for finding the sum of the numbers from the first square up to
the 3ৎth square. Al­Hawārī gives the example for the 35th = 16th square. The following
iteration is performed:

• Take the 1 in the first square. Add 1 to get 2.

• Square it to get 4. This is 1 more than what is in the first two squares (2 , 3), and it
is also what is in the third square (4).

• Then square the 4 to get 16. This is 1 more than what is in the first four squares
(2 , 3 , 5 , 9), and it is also what is in the fifth square (16).

• Square the 16 to get 256. This is one more than what is in the first 8 squares (2 ,3 , 5 , 9 , 27 , 43 , 75 , 239), and it is also what is in the 9th square (256).
• Square the 256 to get 65,536. This is 1 more than what is in the first 16 squares, and
it is also what is in the 17th square.

So, the sum of the numbers in the first 16 squares is 65,535.

The figure shown in the translation is the one found in the Medina, Tehran, and Tunis
manuscripts. The Istanbul and Oxford manuscripts show this figure instead (only Istanbul
has the 65536 written on the left):

6
5
5
3
6

8 4 2 1
128 64 32 16
2048 1024 512 256
32768 16384 8192 4096

77.9 Ibn al­Bannāʾ then gives a variation in which the first square has a number other
than 1, and the rule for filling out the remaining squares in the chessboard is the same:
each square is double the one before it. For example, if the first square has a 3, then the
succeeding squares are 6, 12, 24, etc. The rule to find the sum of the first 3ৎ squares is
to follow the procedure as if a 1 were in the first square, then one multiplies the result
by the number that is in the first square. Al­Hawārī gives the example of adding 5 , 9 ,27 , 43 , 75 , 239 , 367 , 623. The sum of the first eight squares starting with 1 is2 , 3 , 5 , 9 , 27 , 43 , 75 , 239 > 366. Multiplying this by 4 gives 1020, which is the
required sum.

78.1 Another variation is when the ratio of consecutive terms is some number other
than 23 . The example given by al­Hawārī starts with 16, and each square is 2/3 of the
succeeding square. He gives the first five numbers: 16, 24, 36, 54, 81. Putting Ibn al­
Bannāʾ’s rhetorical rule into modern form, the sum will be 27Բ)92ѿ27*35ѿ27 , 92 > 322. We
leave the general rule as an exercise for the reader.

79.1 Ibn al­Bannāʾ then gives a rule for summing sequences of numbers in which the
difference, rather than the ratio, of consecutive terms is constant. Al­Hawārī’s example is
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to add the 6 numbers starting with 10, and with a difference of 3. If we were to write it
all out the sum would be 21 , 24 , 27 , 2: , 33 , 36, but we are working only with the
known numbers 6, 10, and 3. The rule begins by finding the last number, which in this case
is 4Բ)7ѿ2*,21 > 36. Then )36,21*Բ)23 of 7* > 216 is the sum. Ibn al­Bannāʾ’s rhetorical
rule can be expressed in modern notation this way: if there are ৎ numbers starting with ূ
and with a difference of ৅, then the last number ৃ is ৅)ৎѿ2*,ূ, and the sum is )ৃ,ূ*Բ 23ৎ.
79.13 The third type of addition covers consecutive numbers, their squares, and their
cubes. It is true that the first of these is a special case of the second type of addition, but
here the first and last numbers are both given, and the rule is then used to find the sums of
the squares and the cubes.

To add the numbers from 1 to 10, multiply half of the 10 by one more than the 10: 6·22 >
66. In modern notation, ৎ

าো>2 ো > 23ো Բ )ো , 2*.
To add the squares of these numbers, or 2 , 5 , : , 27 , ՜ , 211, the rule is

)34 Բ 21 , 24* Բ 66 > 496. In general, ৎ
าো>2 ো3 > ๟34ৎ , 24๠ ৎ

าো>2 ো.
To add consecutive cubes, square the sum of the numbers. The example is 2 , 9 , 38 ,
՜ , 2111 > 663 > 4136. In general, ৎ

าো>2 ো4 > ຾
ৎ

าো>2 ো຿
3
.

Medieval Arabic mathematicians wrote “[a] square” of a number, with the implied indef­
inite article, rather than “the square” because their numbers admit multiplicity. See below
at 163.2 for a more detailed explanation for the case of roots.

80.5 The fourth type of addition is to add the consecutive odd numbers, their squares,
and their cubes. For the first of these, square half of one more than the last number. Al­
Hawārī’s example is to find 2 , 4 , 6 , 8 , :. The answer is )23): , 2**3 > 36. In general,
if the last number is ৎ, then the sum 2 , 4 , 6 , ՜ , ৎ > )23)ৎ , 2**3.
The sum of the squares of consecutive odd numbers up to ৎ is 27ৎ)ৎ , 2*)ৎ , 3*. In the
example, al­Hawārī finds that 23 , 43 , ՜ , :3 > 27: Բ 21 Բ 22 > 276.
If we let ূ be the sum of the odd numbers up to ৎ, then the sum of the cubes of the odd
numbers to ৎ4 is ূ)3ূѿ2*. Al­Hawārī calculates that 24,44,64,84,:4 > 36Բ5: > 2336.
80.20 The fifth and last type of addition deals with consecutive even numbers, their
squares, and their cubes. Al­Hawārī adds the even numbers from 2 to 10 by calculating23)3 , 21* Բ 2321 > 41.
For the squares 33 , 53 , ՜ , 213 one adds 34 of 10 to 34 of 1, and the result is multiplied
by the sum, 30: 734 , 34 > 824 , and 824 Բ 41 > 331.
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Al­Hawārī gives an alternative rule, using the example of adding the squares 33 , 53 ,՜,233. Here one multiplies a sixth of the last number (12) by the product of the next two
numbers (13 and 14). Taking 27 of 12 gives 2, and 2 by 182 is 364, which is the required
sum. This happens to be the same rule he gave for adding the odd squares.

The sum of the even cubes 34 , 54 , ՜ , 214 “is given by multiplying the sum by its
double”. We already know that the sum 3 , 5 , ՜ , 21 is 30, so we multiply 30 by 60 to
get 1800, which is the answer.

83.1 Section I.1.3. Subtraction.

Just as with addition, several verbs are used for subtraction. Themost common, and the one
which appears in chapter titles and instructions, is ṭaraḥa. We translate it as “to subtract”.
The verb ṭaraḥa is also used for what we call “casting out”, as in casting out nines to
check the answer to a calculation. Two other common verbs for subtraction are saqaṭa, “to
drop”, and naqaṣa, which we also translate as “to subtract”. Rarer are the verbs nazala,
“to remove”, and dhahaba, “to take away”.

To announce the result of a subtraction the verb baqiya (“to remain, leave”) is used. The
word for “remainder” is bāqī. Often we translate a phrase whose literal meaning is “[there]
remains” or “what remains” as “the remainder”. The word for the “residue” after casting
out nines or eights or sevens, covered starting at 87.15, is the related word baqiya, and we
translate bāqiya as “residual”. These twowords appear one time each to mean “remaining”
and “remainder”, respectively, at 110.16 and 118.20.

83.2 Ibn al­Bannāʾ writes of two kinds of subtraction. The first is the subtraction of
one number from another with Indian numerals, and the second is “casting out” to check
the answer of a calculation. Between these two kinds al­Hawārī inserts a description of
repeated subtractions, starting at 86.1, that he took from Lifting the Veil.

Two examples are given for the first kind. Al­Hawārī begins with the example 6146ѿ5:79
and proceeds from the highest rank to the lowest. First, the greater number is written above
the smaller:

5 0 3 5
4 9 6 8

The 4 is subtracted from the 5, and the result is written above:

1
5 0 3 5
4 9 6 8

For the hundreds place, there is nothing (i.e., a 0) in the minuend, so one takes nothing
away from the 9 in the subtrahend, leaving 9. This is subtracted from the 1 above the 5,
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which is really 10 since we are now working in the hundreds place. 9 from 10 leaves 1, so
the first 1 is replaced with a 0, and this new 1 is placed above the hundreds place:

0 1
5 0 3 5
4 9 6 8

In the tens place the 3 is smaller than the 6, so we subtract 3 from 6 to get 3, and this is
subtracted from the 10 above, leaving 7. The figure then becomes:

0 0 7
5 0 3 5
4 9 6 8

The situation is similar for the units place. Since 5 is less than 8, we subtract their differ­
ence, which is 3, from the 70 above. This leaves 67 as the answer:

0 0 6 7
5 0 3 5
4 9 6 8

84.13 Al­Hawārī gives a second example that starts with the units place. He begins
with:

6 5 4 3
3 4 6 9

The 3 is less than 9, so we add 10 to the 3 and then subtract 9, leaving 4. This is placed
above the 3. To compensate for the added 10, a 1 is added to the 6 next to the 9:

4
6 5 4 3
3 4 7 9

For the tens place we have a similar situation: 4 is less than 7. So add 10 to the 4 and
subtract, leaving 7. Then add one to the 4 in the bottom row to get:
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7 4
6 5 4 3
3 5 7 9

Next, taking 5 from 5 leaves nothing, so a 0 is placed above them:

0 7 4
6 5 4 3
3 5 7 9

Taking 3 from 6 leaves 3, so the figure becomes:

3 0 7 4
6 5 4 3
3 5 7 9

The answer is the 3,074 on top.

85.16 Rūmī signs were used in a system of calculation practiced inWestern North Africa
and al­Andalus. See §3 in the Introduction.

86.1 The part on repeated subtractions is taken from Ibn al­Bannāʾ’s commentary, and
is not mentioned in the Condensed Book. It is not one of the two categories of subtraction
he mentions at 83.2 at the start of the chapter. In modern notation the expression “ten less
eight less seven less five less two” is 21 ѿ )9 ѿ )8 ѿ )6 ѿ 3***. This is explained in words
from the inside out: “subtract two from five, and the remainder from seven,…” and in
an English version of the Arabic notation it would be 21 ϊ 9 ϊ 8 ϊ 6 ϊ 3, where the ϊ
stands for “less”. We are keeping the direction of the Arabic figures, so we write it in the
translation as 3 ϊ6 ϊ8 ϊ9 ϊ21. See the discussion at 219.4 below for an explanation of
the word “less” (illā).

In two of the five manuscripts we consulted, Istanbul and Oxford, the numbers are sepa­
rated by the word illā. Here it is in the Istanbul manuscript: . In the Med­
ina manuscript only the last part of the word is drawn, so it looks like an upside­down
“ϊ”: . The two other manuscripts, Tunis and Tehran, put three
dots in place of the word illā for this figure. Here is the figure from the Tunis manuscript:

.14 Both manuscripts, curiously, write the illā in other instances.

86.15 One could simply perform the operations as stated: subtract 2 from 5, then subtract
the result from 7, etc. But Ibn al­Bannāʾ gives three other rules to work it out. For his first
14 The first trio of dots on the right should not be there.



138 Commentary

rule he distinguishes between the minuend, in this case 10, and the subtrahends, which
here are 8, 7, 5, and 2. Add the even subtrahends (the 7 and 2) to the 10, and from this
subtract the odd subtrahends, giving 2: ѿ 24 > 7.
86.18 Another way is to collapse the string of numbers in groups of three. We “subtract
the middle from the sum of the extremes, leaving the remainder as one number”. Taking
the 10, 8, and 7, calculate 21 , 8 ѿ 9 > :, and replace all three with the 9 to get 3 ϊ6 ϊ:.
Repeating the process gives : , 3 ѿ 6 > 7. One does not need to start with the first three
numbers. This works starting from any three consecutive numbers.

87.9 A third way is to perform alternating subtractions and additions, beginning with
the 10. Subtract 8 from 10, then add 7 to the remainder, then subtract 5, and finally add 2.

87.11 See our extended discussions below, at 219.1 and 219.4, for an explanation of
“appended” (zāʾid) and “deleted” (nāqiṣ). They do not mean “positive” and “negative”.
Because numbers were numbers of something counted or measured, negative numbers
would have been meaningless to medieval arithmeticians.

87.15 The second kind of subtraction is what we call in English “casting out”. In “casting
out nines”, which is still taught today, the remainder from division by 9 can be found by
adding the digits and removing multiples of 9. Al­Hawārī gives the example of 6435. He
adds the digits one by one, casting out nines as he goes. So 7 , 5 > 21, and removing a
9 leaves 1. Then 2 , 4 > 5, and 5 , 6 > :. “This is cast out entirely”, meaning nothing
remains. Nothing is literally no number at all, and not our modern number 0.

Al­Hawārī also gives examples of the rules for casting out eights and casting out sevens.
Because multiples of 200 are divisible by 8, one only needs to deal with the first three
places in casting out eights. Al­Hawārī’s example is 5393. The 5000 is cast out entirely,
as is the 200 from the 300. The remainder from the 100 is 4, then 2 is multiplied by the 9,
and to these are added the 3, giving 25. Casting eights from this leaves 1. In general, the
remainder of a number of the form 2ূৃ (i.e., 211 , 21ূ , ৃ) is the same as the remainder
of 5 , 3ূ , ৃ.
88.10 Casting out sevens is more complicated. No multiple of 10 is divisible by 7, so
all digits must be taken into account. The remainders of each power of 10 are different
for the first six powers, after which they repeat. These remainders must be memorized,
and al­Hawārī illustrates Ibn al­Bannāʾ’s rule of expressing this sequence of remainders
in abjad form. The letters appearing there are:

The remainders of 1, 10, 100, 1000, 10000, and 100000 are 1, 3, 2, 6, 4, and 5, respectively.
At 88.14 he gives a short poem designed to help the student memorize these letters.

88.17 Indian numerals were sometimes called al­ghubār, or “dust” numerals, after the
dust­board on which they were commonly written.

89.4 The example al­Hawārī gives is to cast out sevens from 23,786,435. He writes the
digits above their corresponding letters:
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Arabic Transliteration Value
ب و د ه ا ج alif A 1

ب م ث bā B 2
ب و د ه ا ج jīm J 3

ب و د ه ا ج dāl D 4
ب و د ه ا ج hā H 5

ب و د ه ا ج wāw W 6

2 3 7 8 6 4 3 5
J A H D W B J A

For us, it is easier to use the Indian numerals:

2 3 7 8 6 4 3 5
3 1 5 4 6 2 3 1

Multiplying the digits in the corresponding places, and casting out sevens if necessary,
gives:

6 3 0 4 1 1 2 5
2 3 7 8 6 4 3 5
3 1 5 4 6 2 3 1

For example, in the thousands place we multiply 6 by 6 to get 36, and casting out sevens
leaves 1. The digits in the top row add up to 22, and casting out sevens again leaves 1.

90.3 Ibn al­Bannāʾ gives two variations for casting out sevens that do not require the
memorization of the sequence of abjad numerals. The first is an iteration: first multiply the
highest power digit by three (the residue of 10), cast out sevens if necessary, and then add
the result to the previous digit. Al­Hawārī’s example is 58,064. Starting with the highest
power term, multiply 5 by 3 to get 15. Cast out sevens to get 1. Then add this 1 to the 8 to
get 9. Now repeat: multiply 9 by 3 to get 27, leaving 6 after casting out. Add 6 to nothing
(the 0) to get 6. Multiply by 3 to get 18, and cast out sevens, leaving 4. Add 4 to 6 to get
10. Thrice 10 is 30; cast out to get 2, and add it to the 4 to get 6. This is the answer.

90.15 The other variation takes into account two digits at a time. Casting out sevens
from the 58 in 58,064 leaves 2. Although al­Hawārī does not write it, the residue of 58,064
is the same as the residue of 2,064. Next, the residue of 20 is 6, so we now consider 664.
The residue of 66 is 3, so now the number is 34. Its residue is 6, which is the answer.

91.1 Subsection on the way to test [calculations] by casting­out.
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Next, Ibn al­Bannāʾ turns to applications of these techniques of casting out to check the
results of arithmetical operations. These include addition, subtraction, multiplication, and
division/denomination. For the latter two it works even for fractions. Here are a couple of
al­Hawārī’s examples.

91.4 For addition, he works with the example 54 , 75 > 218. He could cast out nines,
eights, or sevens, and for this and subsequent examples he chooses sevens. The residue of
43 is 1, and the residue of 64 is also 1. Add them to get 2, which should be (and is) the
residue of 107. If the residues added to 7 or more, one would cast out a 7 to make it less
than 7.

92.3 In subtraction there is a problem if the residue of the minuend is smaller than the
residue of the subtrahend. Take for example 3: ѿ 24 > 27. The residue of the 29 is 1,
and the residue of the 13 is 6. We cannot subtract 6 from 1, so we add 7 to the 1 and then
subtract: 9 ѿ 7 > 3, and this 2 is the residue of the remainder 16. For casting out nines,
add nine to the residue of the minuend, and for casting out eights, add eight.

92.17 An example for the multiplication of fractions is 24 · 2525 > 545 . The residues of
the multipliers are 24 and 25 . Ibn al­Bannāʾ does not say so, but these are the residues of the
numerators. If, for instance, the multiplier were 425 , he would have found the residue to be75 , since 425 as a single fraction is 245 , and the residue of 13 is 6.
The product of the 24 by the 25 is 223 , or as Ibn al­Bannāʾ puts it, “a third of a fourth”. The
numerator of this fraction is 1. The product 545 is 2:5 , and Ibn al­Bannāʾ takes the residue
of the numerator, which is 5. But these are fourths, not twelfths, so he multiplies by 3 to
get 15 (for 2623 ), whose residue is 1. This agrees with the residue of the multipliers.
The numerator 1 of “a third of a fourth” is equal to the numerator of the answer, so they are
equal in quantity. The kinds of fractions they are, thirds of fourths, are the same, making
them equal in quality. This terminology comes from Aristotle’s Categories, probably via
Ibn Sīnā.15 See above at 73.7 for another use of the words “quantity” and “quality”.

93.6 As Ibn al­Bannāʾ will explain in the section on division at 118.14, the term “divi­
sion” is used for the division of a greater number by a smaller number, and “denomination”
for the division of a smaller number by a greater number. For the division ূ×ৃ > ৄ, whereূ ? ৃ, the ূ is the dividend and ৃ the divisor. If ূ = ৃ, then ূ is the denominated [number]
and ৃ is the denominating [number] or what we call the denominator. For both kinds, ৄ is
the quotient or result. So “the result and the divisor or denominating number” are ৄ and ৃ,
and the “dividend or denominated number” is ূ.
The Arabic words for the “denominator” of a fraction (imām, and less frequently maqām)
are unrelated to the verb “denominate” (sammā) and related nouns such as “denominating
[number]” (musammā minhu).

15 Categories 4b20­24; (Avicenna 2005, 10, 72).
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93.10 For both division and denomination, al­Hawārī gives an example with whole
numbers and an example with fractions.

The Arabic word for the “numerator” of a fraction is basṭ, or occasionally the related
word mabsūṭ. These words are unrelated to the word for “number”, which is ʿadad. We
translate the related verb basaṭa as “to numerate”. Its meaning is to find the numerator of
a fraction that is “a combination of two or more names” (135.1). For example, to numerate
the fraction “five sixths and three fourths” (at 93.15) means to express it as “thirty­eight
fourths of a sixth” ( 495Բ7 ). Finding the numerator is described at length in the first section
on fractions, beginning at 135.8.

93.15 The notation for distinct fractions shows one next to the other, as explained later
at 136.8 and 139.1. This problem is to divide 45 67 by 23 . We would write 45 67 as 67 , 45 , and
the result of the division as 427 . The residue of 427 > 2:7 is 5, or 67 . The residue of 23 is 1,
or 23 . Multiplying them, one gets 623 , or, as Ibn al­Bannāʾ says, “five halves of a sixth”.
The residue of the dividend, 45 67 > 4935 , is 3, with a denominator of 24. So the 623 must
be converted to 24ths, making it 2135 , which is 435 after casting out again. This matches the
residue of the 4935 .
94.1 Al­Hawārī gives an example of checking the result of the denomination of whole
numbers even if it might be superfluous in practice. The example is to denominate 11 with
15, which for us gives the fraction 2226 . The residue of the denominated number 11 is of
course the same as the residue of the numerator 11 of the result, so there is nothing to
check. The only aspect that makes this appear to be a problem is that al­Hawārī follows
common Arabic practice by expressing the result not as 2226 , but as “three fifths and two
thirds of a fifth”. We might write this as 46 , 34 26 , but for al­Hawārī it would be shown as3 44 6 (the notation for this fraction is explained at 123.18). The numerator and denominator
of this fraction must be calculated in order to find its residue, but this brings us right back
to the 11 and 15 we started with.

94.5 Checking the result of the denomination of fractions requires some work. Writing
Ibn al­Bannāʾ’s example in notation, it is to denominate 3 34 7 with 2 64 9 , which results in34 . After finding the numerators, the problem remains to denominate 97Բ4 with 279Բ4 . The
product of the residues of 34 and 279Բ4 should equal the residue of 97Բ4 , but we need to be sure
the denominators are the same to make it work. The residue of the numerator of 34 is 2.
The residue of the numerator of 279Բ4 is also 2, and multiplying the 2 (as 34 ) by the 2 (as 39Բ4 )
gives 54Բ4Բ9 . Because the 6 in the denominator of the 97Բ4 is lacking in the 54Բ4Բ9 , we multiply
the numerator and denominator of the latter by 6 to get 354Բ4Բ7Բ9 , and its residue is 3, which
is the “answer”. We now turn our attention to 97Բ4 . The residue of the 8 is 1, and this must
be multiplied by 3 and then by 8 to make the denominators match. This gives 354Բ4Բ7Բ9 , and
its residue is 3, which agrees with the answer.

95.1 Section I.1.4. Multiplication.
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95.2 Arabic arithmetic books often define multiplication as “the duplication of one
of two numbers by however many units are in the other”, as Ibn al­Bannāʾ phrased it
here in the Condensed Book.16 This definition by “duplication” may come from Book
VII of Euclid’s Elements: “A number is said to multiply a number when that which is
multiplied is added to itself as many times as there are units in the other, and thus some
number is produced”.17 In fact, Abū l­Wafāʾ (tenth century) writes in his arithmetic book:
“Euclid stated the meaning of multiplication in Book VII of his work The Elements, as did
Nicomachus of Gerasa in the Arithmetic. They said that multiplication is the duplication
of one of two numbers by the amount of what is in the other in units”.18

It would not matter so much that Nicomachus, in fact, gives no definition of multiplication
in his Arithmetical Introduction if it were not for what Abū l­Wafāʾ says about division:
“Division according to the example (qiyās) of Euclid and Nicomachus is the partitioning
(tafrīq) of one of two numbers by the amount of units in the other”.19 Neither Euclid nor
Nicomachus defines division in their books, and if this statement is not intended to make
such a claim, it at least implies that this definition, too, originates with the Greeks.

Contrary to what Abū l­Wafāʾ’s testimony might imply, there is evidence that the “dupli­
cation” definition of multiplication was already circulating among Arabic arithmeticians
before they began reading Euclid. The definition appears in al­Khwārazmī’s algebra book,
written sometime between 813 and 833 CE. This book presents the practical algebra con­
nected with finger­reckoning, and the only hint of Greek influence is the presence of letters
to label points in some diagrams.20 Later, al­Khwārazmī copied the definition into his book
on calculating with Indian numerals. This way of characterizing multiplication is rather
intuitive, and it is entirely possible that arithmeticians developed or learned it independent
of Euclid.

It may have been his desire to tie practical Arabic arithmetic with the Greek tradition that
led Abū l­Wafāʾ to imply a false origin for both definitions. We have found another in­
stance of this kind of “false history” in the tenth century philosopher al­Fārābī. In the third
part of his Enumeration of the Sciences he classifies the various branches of mathematics.
He describes algebra as being “concerned with the ways of figuring out how to find num­
bers that apply Euclid’s principles on the rational and irrational in the tenth book of the
Elements…”21 Yet not one of the extant books on algebra written before him, and to our
knowledge none written after him, show any sign of applying principles from Book X to
algebra.22 Al­Fārābī’s wishful connection of algebra to Euclid’s Elements seems to have
been a way to legitimize the prevalence of irrational numbers in algebra and to suggest a
Greek inspiration for the art.

Whatever its source, the “duplication” definition of multiplication was devised with whole
numbers in mind. Abū l­Wafāʾ criticizes it on this point, and shows through an example of

16 Most arithmetic books give this definition. We found four arithmetic books that give no definition at all:
those of al­Uqlīdisī, Kūshyār ibn Labbān, al­Baghdādī, and al­Qurashī. (Titles of their books are given in
Appendix C.) The word for “duplication” is almost always ḍaʿafa.
17 (Euclid 1956, vol. 2, 278).
18 (Saidan 1971, 124.16).
19 (Saidan 1971, 126.10).
20 (al­Khwārizmī 2009, 123.6).
21 (al­Fārābī 1953, 74.10).
22 There were some books that apply algebra to solve problems relating to Book X, but not the other way
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the price of cloth that it also works for fractions. He justifies this extension by appealing
to propositions about lines, reinterpreted numerically, from Book II of the Elements.23 Ibn
al­Bannāʾ gives a different definition for the multiplication of fractions, below at 149.2.
Neither he nor al­Hawārī defines the multiplication of irrational numbers, even if these
multiplications are performed in the book (183.2). Definitions in practical books like Ibn
al­Bannāʾ’s should be read more as intuitive characterizations that introduce students to
the concepts rather than precise definitions of the kind that Aristotle or David Hilbert
would have approved.

95.3 Ibn al­Bannāʾ distinguishes between two types of multiplication. In the first type,
one puts a copy of the multiplicand in place of each unit of the multiplier. The example is
“three men: each of them has five dirhams. You multiply five by three, which gives fifteen
dirhams”. Each of the three men is substituted with five dirhams, to get a total of fifteen
dirhams. There is a change in meaning (maʿnan) because the three (men) became fifteen
(dirhams). Also, the units shift from (three) men to (fifteen) dirhams, which is a change in
terms (lafẓ).

The example for the second type is “five dirhams, how many thirds does it contain?”. This
type is called “conversion” because the units for the amount “five dirhams” is converted
from dirhams to thirds of a dirham. There are 5 of the former and 15 of the latter. The
total amount “five dirhams” remains the same, so there is no change in meaning. But the
shift in units, from dirhams to thirds of a dirham, is a change in terms. “All of what is in
the multiplier in units”, or three (thirds of a dirham), “is equal to the one [dirham] of the
multiplicand”. Thus the “[number of] units in the multiplier”, or three, “is the number of
what is in one of the multiplicand in parts”, or, more loosely translated, “is the number in
each part [i.e., each dirham] of the multiplicand”. Conversion of fractions is covered later,
at 157.9, and the two corresponding types of division are explained beginning at 117.9.

Ibn al­Bannāʾ’s description of the first type, at 95.3, is problematic. It reads “in putting
down the multiplier, each one of them is equal to the one of the multiplicand”. Reading
the example for this type at 95.10, it could be translated as: “in putting down the multi­
plier, each one of them stands for (mithl) the single entity (wāḥid) of the multiplicand”.
One should substitute for each unit in the multiplier the entire multiplicand, not just its
unit (“the one”). But this translation is at odds with the description of the second type of
multiplication, which begins: “all of what is in the multiplier in units is equal to the one of
the multiplicand”. The same phrase “the one of the multiplicand” in this case must mean
its unit, and not the multiplicand as a single entity. Perhaps the description of the first type
is misstated.

In Lifting the Veil, Ibn al­Bannāʾ completes his descriptions and examples by writing “The
first type is combining (tarkīb) and the second is dissecting (tafṣīl)”, though al­Hawārī
does not copy it. In the example of the first type the three copies of five dirhams are
combined, and in the example of the second type each of the five dirhams is dissected into
three pieces.

Modern mathematicians work with only one kind of multiplication because our numbers
all belong to the same abstract set. Instead, in Arabic arithmetic a number is a number

around.
23 (Saidan 1971, 124).
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of something, whether it be men, dirhams, mithqals, or abstract units. This is why Ibn
al­Bannāʾ distinguishes between a change in terms and a change in meaning. (See also
our comments on division, below at 117.9.) This idea of different kinds of number is also
behind the names of the powers of ten (hundreds, thousands, etc.), the names of fractions
(thirds, fourths, etc.), and the names of the powers of the unknown in algebra (numbers,
things, māls, cubes, etc.). So “three men” was a particular kind of 3, like “three boats”,
“three thousands”, “three fifths”, and “three things”.

Arabic authors often designated numbers by their kind, and several examples are found
in al­Hawārī’s book. Just above, at 95.7, we read “the units in the multiplier”; at 114.12,
we find “the ranks of the result”; at 208.1; “if we make the starlings twenty­four”; and at
215.15, “we square half of the things”. These nouns mean, respectively, “the number of
units”, “the number of ranks”, “the number of starlings”, and “the number of things”. If
one has 24 starlings, for example, then that collection of birds is an instance of the number
24, and one can indicate their number by saying merely “the starlings”.

This idea that a number has two aspects, its meaning (value) and its term (the kind of
number), breaks down with irrational roots, though our authors do not discuss it. This is
because it makes no sense to have an irrational number of anything, like ҇6 bricks, for
example. This becomes problematic in algebra, where the “coefficient” (the “number”, or
meaning) of a term had to remain rational even when multiplying by an irrational number.
See the discussion below in the last paragraph of our commentary to 219.1.

95.15 Rules for multiplying numbers, Ibn al­Bannāʾ tells us, fall into one of three cate­
gories: those with shifting, those with half­shifting, and those without any shifting. Meth­
ods involving shifting are designed for the dust­board or wax tablet, where it is easy to
erase and rewrite the digits. Those without shifting were intended for the lawḥa with ink
pen, and will also work on paper. He also describes some techniques of mental arithmetic
at the end of the chapter, beginning at 108.9, that he took mainly from Ibn al­Yāsamīn’s
Grafting of Opinions.

95.17 The first multiplication rule with shifting is called “sleeper multiplication”, per­
haps because the numbers are placed horizontally as if they are sleeping on a bed. There is
another method of “sleeper multiplication”, without shifting, that features numbers written
horizontally. It is described at 103.14.

96.3 Al­Hawārī gives the example of multiplying 43 by 54. They are arranged on the
dust­board like this:

4 3
5 4

The overall scheme will be to multiply the 4 of the 43 by the 54, then the 54 will be shifted
to the right, and then the 3 from the 43 will be multiplied by the 54. First the 4 from the
43 is multiplied by the 5, and the 20 is placed above:



Commentary 145

2 0 4 3
5 4

The 4 from the 43 is then multiplied by the 4 below, giving 16. The 1 from the 16 is added
to the 0 we just wrote, and the 6 of the 16 replaces the 4:

2 1 6 3
5 4

The 54 is then shifted to the right one unit, giving this figure:

2 1 6 3
5 4

Now we multiply the 3 by the 5 below. The resulting 15 is added to the 16 above to get
31:

2 3 1 3
5 4

Now the 3 by 4 gives 12. The 1 is added to the 1 on top, and the 2 replaces the 3:

2 3 2 2
5 4

The result of the multiplication of 43 by 54 is 2,322.

It is important to know when to add a digit and when to replace a digit. One adds to digits
that have been calculated, while one replaces digits from the original problem. This way,
the digits of the multiplicand, 43, are replaced with the digits of the evolving calculated
number.

97.1 The other method of multiplication with shifting is called vertical multiplication.
It works the same way as the sleeper multiplication just described. Al­Hawārī’s example
is to multiply 42 by 37. The digits are arranged vertically, with units on top:
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2
4 7

3

Like before, we first multiply the 4 of the 42 by the 3 of the 37 to get 12. This is placed
next to the 3, with the 2 above the 1:

2
4 7
2 3
1

The 4 is then multiplied by the 7, giving 28. This will be placed to the left, too. As before,
we replace the digit 4 of the multiplicand with the 8, and we add the 2 to the calculated 2
that lies below it:

2
8 7
4 3
1

Now the multiplier is shifted up one unit:

2 7
8 3
4
1

The 2 on the left will now be multiplied by the 37. First, 3 · 4 > 7, so we add the 6 to the
calculated 8, giving 14. Because of the extra digit, the 1 is added to the 4 below:

2 7
4 3
5
1

Finally, 3 · 8 > 25. The 4 replaces the 2, and the 1 is added to the 4 below it:
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4 7
5 3
5
1

The result of multiplying 42 by 37 is 1,554.

98.4 The method by half­shifting is a technique for squaring numbers. Al­Hawārī’s
example is to multiply 463 by itself. First, the number is written with dots between the
digits:

4 • 6 • 3

The 4 is squared, and the resulting 16 is written above:

1 6
4 • 6 • 3

Next, double the 4 to get 8, and put this in place of the first dot:

1 6
4 8 6 • 3

This 8 is regarded as being shifted, and it is multiplied by the 6 to its right to get 48. This
result is added above the 8, treating it like 271 , 59:

2 0 8
4 8 6 • 3

Next the 6 is squared, giving 36. This is added to the 2080 above:

2 1 1 6
4 8 6 • 3

Now the 6 is doubled to get 12, and this is shifted one place to the right so that it replaces
the “6 •”. One must also shift the 8, treated as 80 since it is one place to the left, that was
doubled before. This is added to the 12, making 92:
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2 1 1 6
4 8 9 2 3

Now the last 3 must be multiplied by this shifted 92. The 3 by the 9 gives 27, which is
added to the 16 above the 89, making 43:

2 1 4 3
4 8 9 2 3

Next 3 by 2 is 6, and this is added above the 2:

2 1 4 3 6
4 8 9 2 3

Last, we square the 3 to get 9, and add this above the 3:

2 1 4 3 6 9
4 8 9 2 3

The result of multiplying 463 by itself is 214,369.

99.14 There are several different ways to perform the third kind of multiplication, with­
out any shifting. Ibn al­Bannāʾ first explains “table multiplication”, which we call lattice
multiplication. Al­Hawārī’s example is to multiply 435 by 287. These are drawn around a
grid with diagonals:

❅
❅
❅

❅
❅
❅

❅❅

❅
❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅
❅

❅
❅❅

4 3 5

7

8

2

Ibn al­Bannāʾ mentions that the 287 can be placed on the left or the right. Most
manuscripts, and our translation, show it on the right, but putting it on the left makes the
final addition easier. Next, in each of the nine squares we put the product of the column
digit by the row digit. For example, for the upper left square 8 · 5 > 39, so a 2 goes under
the diagonal and an 8 above the diagonal. The spaces are then filled out like this:
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❅
❅
❅

❅
❅
❅

❅❅

❅
❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅
❅

❅
❅❅

4 3 5

7

8

2

8 1 5
2 2 3
2 4 0

3 2 4
8 6 0

0 0 1

We then add the numbers between the diagonal lines. The upper right shows a 5, which
is the units. Between the first and second diagonal lines are a 1, 3, and 0. These add to 4,
which is the tens place of the answer. Adding the numbers between the next two diagonals
gives 9 , 3 , 5 , 5 > 29, so the hundreds place is an 8, and the 1 is carried to the next
sum. Continue like this to get the answer 124,845.

❅
❅
❅
❅

❅
❅
❅❅

❅
❅
❅
❅

❅
❅

❅❅

❅
❅
❅

❅
❅

❅
❅❅

4 3 5

7

8

2

8 1 5
2 2 3
2 4 0

3 2 4
8 6 0

0 0 1
1 2 4 8 4 5

❅
❅
❅
❅

❅
❅❅

❅
❅
❅
❅❅❅

101.16 For “vertical multiplication” al­Hawārī multiplies 183 by 347. These are ar­
ranged vertically, separated by some space:

7 3
4 8
3 1

The units place of the answer will be in the top row between the numbers, the tens place
in the row below that, etc. First, we multiply the 3 from the 183 one by one by the digits
of 347. The 21 from 4 · 8 is put on the right like this:

7 1 3
4 2 8
3 1

Next, 4 · 5 > 23. The 2 is added to the 2 in the tens place to become 4, and the 1 is placed
below:

7 1 3
4 4 ✁✁3 8
3 1 1
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So far we have 141. As in the Oxford manuscript, we will cross out discarded digits. Next,
the 3 is multiplied by the 3 to get 9, which is added to the 1 on the bottom to make 10:

7 1 3
4 4 ✁✁3 8
3 0 ✁✁2 1

1

Each digit on the left is then multiplied by the 8, bringing the diagram to this state:

7 1 3
4 0 ✁✁5 ✁✁3 8
3 8 ✁✁7 ✁✁1 ✁✁2 1

8 ✁✁5 ✁✁2
2

Last, the 1 is multiplied by the 7, 4, and 3:

7 1 3
4 0 ✁✁5 ✁✁3 8
3 5 ✁✁9 ✁✁7 ✁✁1 ✁✁2 1

3 ✁✁: ✁✁9 ✁✁5 ✁✁2
6 ✁✁4 ✁✁3

Thus 294 · 458 > 74-612.
103.14 The horizontal version of “vertical multiplication” is called “sleeper multipli­
cation”, like the method described above at 95.17. Al­Hawārī multiplies 253 by 987, first
writing them on two lines like this:

2 5 3
9 8 7

First, the 3 is multiplied by the digits in 987, beginning with the 7. The 21 is written above:

2 1
2 5 3
9 8 7

Next is 4 · 9 > 35. The 4 is added to the 2 of the 21, making 6, which is placed above,
and the 2 is put to the left:
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6
2 ✁✁3 1
2 5 3
9 8 7

So far the result is 261. Again, we cross out defunct digits as we go, but most manuscripts
just leave them alone. Next, 4 · : > 38, and this is added the same way:

9 6
2 ✁✁3 ✁✁3 1

2 5 3
9 8 7

Now the 5 is multiplied by the 7, 8, and 9, giving this figure:

2
✁✁8 3 1
✁✁4 ✁✁: ✁✁7

5 ✁✁3 ✁✁3 ✁✁3 1
2 5 3
9 8 7

Finally, after multiplying the digits by 2, the final figure is:

9
✁✁4
✁✁3 7

4 ✁✁8 ✁✁4 1
✁✁7 ✁✁4 ✁✁: ✁✁7

2 ✁✁6 ✁✁3 ✁✁3 ✁✁3 1
2 5 3
9 8 7

The result of multiplying 253 by 987 is 249,711.

104.1 For rūmī calculation see 85.16 above and §3 in the Introduction.

106.11 This next method, called “repetition”, is just a curiosity of calculation. It works
when the digits in each number are all the same and they both have the same number of
digits, like 7777 by 9999, or, in al­Hawārī’s example, 444 by 333. These are written on
two lines like this:
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4 4 4
3 3 3

Under this we put a 1, 2, 3, etc., until we get to the end of one number and the beginning of
the next. Then the numbers descend back to 1. These numbers will serves as multipliers:

4 4 4
3 3 3
1 2 3 2 1

Multiply the 3 of 333 by the 4 of 444 to get 12. Multiplying the 12 by the 1 on the left
gives 12, which is put above like this:

1 2
4 4 4

3 3 3
1 2 3 2 1

Next, the 12 is multiplied by the 2 to get 24, and this is added above, one place to the
right. The 2 is added to the 2 of the last 12 to make 4, so we replace it as we did in the last
scheme:

4
1 ✁✁3 4

4 4 4
3 3 3
1 2 3 2 1

The 12 is then multiplied by the 3, giving 36, and this is added above the same way:

4 7
1 ✁✁3 ✁✁5 6

4 4 4
3 3 3
1 2 3 2 1

Continuing, we multiply the 12 by the 2, and then finally the 12 by the 1. The final figure
is:
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4 7 8 5
1 ✁✁3 ✁✁5 ✁✁7 ✁✁5 2

4 4 4
3 3 3
1 2 3 2 1

So the product of 333 by 444 is 147,852.

108.9 The techniques of multiplication presented so far are meant to be worked out
in Indian notation on a board, and can be applied to any two (positive) integers. The re­
maining techniques are either shortcuts originating in finger­reckoning, or they are board
techniques that work for specific kinds of numbers. Many of these rules were copied by
Ibn al­Bannāʾ from Ibn al­Yāsamīn’s Grafting of Opinions, a book that is a kind of hybrid
between Indian calculation and finger reckoning. Even though that book is expressly de­
voted to calculation with Indian numerals, it is organized like a book on finger reckoning
in that it covers multiplication and division before passing to addition and subtraction;
also, it still retains the rules of mental calculation that Ibn al­Bannāʾ copied into his book.
In the following breakdown of Ibn al­Bannāʾ’s remaining rules, we indicate which come
from finger­reckoning (FR) and which were taken from Ibn al­Yāsamīn (Y):

108.9 109.7 109.19 111.7 112.5 112.16 113.6 113.16 114.4
FR × × × × × × ×
Y × × × × × ×

In addition, at 109.16 al­Hawārī gives a variation on a finger­reckoning rule that he at­
tributes to al­Yāsamīn.

Multiplication “by excess” is a trick for doing the calculation mentally when at least one
of the numbers is between 10 and 19. To multiply 12 by 15, think of the 12 as 2 more than
10. Divide the 2 by the 10, which is 26 , and multiply this by the 15 to get 3. Then add this
3 back to the 15 to get 18, and multiply by 10 to get the answer, 180. Al­Hawārī then does
it again, switching the roles of the 12 and 15. In general, to multiply a number of the form21 , ূ (ূ is a digit) by another number ৃ, one calculates ) 2ূ1ৃ , ৃ* Բ 21. Al­Hawārī gives a
second example, 24 · 28, that gives fractions. Try it in your head! 421 of 17 is 6221 , or 6 221 .
Add this to the 17 to get 33 221 . Finally, multiply by 10 to get the product, which is 221.
109.7 Another trick for mental calculation is called “denomination”. Al­Hawārī’s ex­
ample is to multiply 6 by 12. First denominate (we would say “divide”) one of the numbers
with their sum. Dividing 6 by 18 gives 24 . Then multiply this by the other number, 12, to
get 4. Last, multiply this 4 by the sum, 18, giving 72.

Written algebraically, to multiply ূ by ৃ one performs these operations: ূূ,ৃ Բ ৃ Բ )ূ , ৃ*.
This method can only be useful if the two numbers have a common divisor. Otherwise,
the multiplication of ূূ,ৃ by ৃ will require one to find ূ Բ ৃ, which is the original problem.
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109.16 A variation on this rule can be written in modern notation as ূԲৃ > )ূѿ ূূ,ৃূ*)ূ,ৃ*. Al­Hawārī gives Ibn al­Yāsamīn as his source, though this rule is not in that author’s
Grafting of Opinions. We do not know its origin.

109.19 Another denomination method is to divide one of the two numbers by a power
of ten, and then multiply the result by the other number. This is then multiplied by the
power of ten to get the product. Al­Hawārī first works out the example 35 · 9. He divides
the 8 by 10 to get 56 . Then 56 · 35 > 2:26 . Multiplying this by 10 gives the product 192.
The advantage here is that the numbers are kept small until the end when the power of ten
is multiplied back.

110.5 The Arabic word we translate as “power of ten” is ʿaqd. The use of this word in
arithmetic originated in finger­reckoning. Historian A. S. Saidan wrote: “In Arabic ʿuqda
is the name of the finger­joint, and ʿaqd in this sense should mean ‘to bend the finger­
joint’”.24 He later described the word in more detail:

This placement [of the fingers] is called ʿaqd, plural ʿuqūd. Thus the finger­
reckoner understood numbers as formed of places, namely units, tens, hun­
dreds, etc., each place having one or the other of the nine ʿuqūd: one, two,
… nine. With this understanding the word ʿuqūd came to mean what we may
now call digits. But in usage ʿaqd and place were not always clearly distin­
guished.25

The first occurrence of the word ʿaqd in al­Hawārī’s book is in a rule of Ibn al­Bannāʾ
given above at 87.17. There it takes the meaning of “power of ten” or “place”. The other
seven instances of the word are in the present chapter covering finger reckoning rules,
from 109.19 to 111.3. When reading “power of ten” here one should keep in mind its
association with the positioning of the fingers.

The definition at 110.5 is not accurate. The only non­zero rank should be a ten or a hundred
or the like, not just the first (awwal). The way the condition is stated, a number like 310
would be a “simple power of ten”.

110.12 Al­Hawārī then works out 23·26, which he solves by working through 26×21 >223 , 223 · 23 > 29, 29 · 21 > 291. He then works it out again, this time subtracting 5
from the 15 so that the first operation gives a whole number. He takes 26 ѿ 6 > 21, then21 × 21 > 2, 2 · 23 > 23, and 23 · 21 > 231. To compensate for the subtracted 5, he
calculates 6 · 23 > 71, and this is added to the 120 to get 180, which is the product.
111.1 Next al­Hawārī finds 4 · 26 similarly, but by adding rather than subtracting.
Adding 2 to the 3 gives 5, and dividing that by 10 gives 23 . This 23 may not be a whole
number, but it is easier to work with than 421 . Then 23 · 26 > 823 , and “we raise each [digit]
by ten” to get 75. From this we must subtract 3 · 26, or 30, to get 45, which is the answer.
With practice, methods like these prove to be quite useful.

24 (Saidan 1968, 707).
25 (al­Uqlīdisī 1978, 10).
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111.7 Recall the “repetition” method at 106.11, which was covered just before the
techniques of mental multiplication. That method requires that the number of digits in
the multipliers be the same, and that all the digits in each multiplier be equal, as in al­
Hawārī’s example 444 · 555. This next method, called “nines”, works when one of the
two multipliers consists of all 9s. Al­Hawārī works through the example 555 · :::. We
put them on two lines, and above themwe put a row of dots equal to the sum of the number
of places of the two numbers, in this case six:

• • • • • •
4 4 4
9 9 9

First, 5 · : > 47. The 6 replaces the right­hand dot, and the 3 replaces the middle dot of
the remaining dots:

• • 3 • • 6
4 4 4
9 9 9

Next, the difference : ѿ 5 > 6 replaces the dots between the 3 and 6:
• • 3 5 5 6

4 4 4
9 9 9

Last, the remaining dots are replaced with 4s:

4 4 3 5 5 6
4 4 4
9 9 9

Then 555 · ::: > 554-667.
To see why this works, note that multiplying a number of the form ূূূ (i.e., 211ূ,21ূ,ূ)
by 999 is the same as ূূূ by 2111 ѿ 2, which is of the form ূূূ111 ѿ ূূূ. The digits of
the answer must then be ূ, ূ, ূ ѿ 2, : ѿ ূ, : ѿ ূ, and 21 ѿ ূ.
112.5 Next is another method of multiplying by a number expressed with all 9s. This
one has no restriction on the other number. Al­Hawārī’s example is ::: · :-465. Add to
the 9,354 as many 0s as there are 9s in 999 to get 9,354,000. Then subtract the 9,354 to
get 9,344,646, which is the desired product.
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112.16 Themethod called “squaring” derives from the fact that \23)ৃ,ূ*^3ѿ\23)ৃѿূ*^3 >ূৃ. The method is much simpler to apply mentally than the modern formula suggests. To
multiply 17 by 19, al­Hawārī squares half their sum, 18, to get 324. From this he subtracts
a square of half the difference between them, which is 1, to get 323. This is the desired
product.

Incidentally, in his Lifting the Veil Ibn al­Bannāʾ appropriates this rule as the foundation
for arithmetical proofs for the rules for solving the three composite algebraic equations.
The same rules are stated and illustrated in the present work starting at 214.7, but without
proofs.26

113.6 Another “squaring” method entails squaring one of the two numbers and multi­
plying or dividing the result by their ratio. To multiply 36 · 26, al­Hawārī squares the 25
to get 625. Because 25 is the greater of the two numbers, its square is multiplied by the
ratio of 15 to 25, or 46 , to get 375, which is the answer. He then works it out by squaring
the 15 to get 225. Because 15 is the smaller number, its square is divided by the ratio 46 ,
again giving 375. Algebraically, ূ Բ ৃ > ূ3 Բ ৃূ .
113.16 In this next method, Ibn al­Bannāʾ makes use of rules that can be written in
modern notation as ূৃ > ৃ3 ѿ )ৃ ѿ ূ*ৃ and ূৃ > ূ3 , )ৃ ѿ ূ*ূ, for ূ = ৃ. Al­Hawārī
multiplies 36 by 14 using both rules. For the first rule, the difference 22 is multiplied by
36 to get 792. This is taken from 1296, a square of 36, leaving the answer 504. For the
second rule, the difference 22 is multiplied by 14 to get 308. This is added to 196, a square
of 14, to get the same answer, 504.

Al­Hawārī did not pick a good example to illustrate the utility of this trick. In one step in
the first rule he has to multiply 22 by 36, which itself is no easier than finding 36 by 14
directly. The rules have an advantage if the difference between ূ and ৃ is a nice number,
like in the example of 16 by 26. The difference is 10, which multiplied by 26 easily gives
260. Subtract this from 676, a square of 26, to get 416. Or multiply the 10 by the 16 to get
160, and add this to 256, a square of 16, to again get 416.

114.4 The last trick deals with multiplying multiples of powers of 10. To multiply 30
by 140 al­Hawārī first multiplies 3 by 14 to get 42, and to this he adds back the zeros to
get the answer, which is 4,200.

115.1 Students should memorize the multiplications of the whole numbers from 1 to
10.

117.1 Section I.1.5. Division.

117.2 Ibn al­Bannāʾ may not have taken into account non­integers in his definition of
multiplication at 95.2 above, but he did so for division. He copied two definitions from
Ibn al­Yāsamīn, one at 117.2, which calls for the decomposition of the dividend into equal
parts, and the other at 117.5, based instead on ratio. Al­Hawārī copies Ibn al­Bannāʾ’s

26 For arithmetical proofs in Arabic algebra, see (Oaks 2018a).
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explanations from Lifting the Veil that the first “applies to discrete quantities”, that is,
to whole numbers, while the second “concerns continuous quantities”, which in his case
are the numbers of the arithmeticians that include fractions and irrationals. This second
definition is echoed in Ibn al­Bannāʾ’s definition of a fraction, below at 133.1, but there
the numbers in the ratio are assumed to be whole numbers. Neither definition is known
from Greek sources (but see above at 95.2 for a discussion of Abū l­Wafāʾ’s attempt to
link the first definition of division to Euclid and Nicomachus). At 117.7 Ibn al­Bannāʾ then
gives the definition of division that is observed by “most people”, which instead counts
how many divisors are in the dividend.

117.9 The two meanings of division that he then offers stem from the two definitions at
117.2 and 117.7. The first is “the division of a type by another type, like dirhams by men”,
and the second is “the division of a type by the same type”. This distinction corresponds
to the notion of a change in terms for the two kinds of multiplication, above at 95.3.

117.16 The examples of the two meanings, here and at 118.1, mirror the examples for
multiplication at 95.10 and 95.12. For the first meaning, Ibn al­Bannāʾ divides 15 dirhams
equally among five men, and for the second, he divides a piece of wood of fifteen spans
into pieces of wood of three spans. The explanations given here correspond to those for
multiplication at 95.3 and 95.6: decomposing (the 15 dirhams) and uniting (the 15 spans
into groups of three) are the opposites of the combining (5 dirhams of 3men) and dissecting
(5 dirhams into thirds of a dirham) that we saw for multiplication.

118.14 A distinction was often made in medieval Arabic arithmetic between divid­
ing a greater number by a smaller number and dividing a smaller number by a greater
number. Books written in the finger­reckoning tradition typically “divide” (qasama) the
greater by the smaller, and “relate” (nasaba) the smaller to the greater.27 Nasaba is the
verb associated with nisba, the word for “ratio”. Ibn al­Bannāʾ and al­Hawārī use qasama
similarly, but they follow al­Ḥaṣṣār and Ibn al­Yāsamīn by “denominating” (from sammā)
the smaller with the greater. To denominate 3 with 7 means to give 3 the denomination, or
name, “sevenths”. Saying the result “three sevenths” is like saying “three cents”, but with
a different denomination. The prepositions are different between division and denomi­
nation, too. One divides a number by (ʿalā) a smaller number, while one denominates a
number with (min) a greater number.

118.17 Al­Hawārī illustrates the method of dividing a greater number by a smaller
number with the example 356 × 23. First, the numbers are put on two lines like this, with
the highest power terms lined up:

2 4 5
1 2

The 12 goes into the 24 of the 245 two times, so we write a 2 under the 12. Because the 2
and 4 of 245 are exhausted, they are replaced with zeros:

27 The earliest extant book is Abū l­Wafāʾ’s arithmetic book (Saidan 1971, 113).



158 Commentary

0 0 5
1 2

2

Next, shift the 12 one place to the right:

0 0 5
1 2
2

The 12 does not go into the 5 at all, so a zero is put below and the remainder is 5:

0 0 5
1 2
2 0

The remaining 5/12 is “two sixths and half a sixth”, which is written as 2 33 7 . This kind of
fraction is explained at 138.1. The final answer is 2 33 7 31, read right­to­left.
119.18 The rules Ibn al­Bannāʾ gives from here up to and including 124.8 are from
finger­reckoning. The first technique is to partition the dividend and then add the respec­
tive quotients. Al­Hawārī’s example is to divide 44 by 11. He breaks up the 44 into 33 and33, then he divides 22 by 11 to get 2 for each of the 22s. The quotient is then 3 , 3 > 5.
This technique might seem more useful with a problem like dividing 399 by 19. Thinking
of 399 as 491 , 2:, we divide each number by 19 to get 31 , 2 > 32, which is the answer.
In general, )ূ , ৃ* × ৄ > )ূ × ৄ* , )ৃ × ৄ*.
The second technique is to factor the divisor and divide by each of them in turn. To divide
96 by 12, al­Hawārī decomposes the 12 into 3 Բ 7. He finds that :7 × 3 > 59, and this he
divides by the 6 to get 8, which is the answer. In general, ূ × )ৃ Բ ৄ* > )ূ × ৃ* × ৄ.
The third technique is to “reconcile” (wafiqa) the dividend and the divisor, which means
to cancel common divisors. To divide 35 by 15, al­Hawārī takes a fifth of the dividend and
the divisor to change the problem into 8 × 4, which gives “two and a third”. In general,ূৃ × ূৄ > ৃ × ৄ.
120.20 In “apportionment” (muḥāṣṣa), a certain quantity is deducted proportionally
from two or more amounts. In al­Hawārī’s example three people want to give a total of
ten dinars to a bankrupt friend, and they do it in such a way that each of them gives an
amount proportional to how much each of them has, and they have 4, 5, and 6 dinars,
respectively. In modern notation, we want to find three numbers ূ, ৃ, and ৄ such thatূ , ৃ , ৄ > 21 and 5ূ > 6ৃ > 7ৄ .
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Al­Hawārī begins by adding up the wealth of the three people: 5 , 6 , 7 > 26. These
“surpass them”; in other words, they surpass the three “apportioned parts” that will be
given, and which will add up to ten dinars. For the first friend’s gift al­Hawārī multiplies
the 10 by the 4 dinars to get 40 dinars, and he divides the result by 15 to get his share, or
“apportioned part”, which is 334 dinars. The same procedure gives the other shares. For the
second friend this is 6 Բ 21 × 26 > 424 dinars, and for the third it is 7 Բ 21 × 26 > 5 dinars.
This works because the first must give 4/15 of the total amount of 10 dinars, the second
5/15, and the third 6/15, and the proportions add to 1.

121.14 Al­Hawārī mentions four variations on this method, each one being a reordering
of the operations. For example, where the share of the first friend was calculated above
by 21 · 5, then ×26, the first variation is to calculate 5 × 26, then ·21. The second is to
calculate 21 × 26, then ·5. In the third, we find 26 × 5, then we divide 10 by the result. In
the fourth we find 26 × 21, then we divide 4 by the result. These variations were probably
devised for cases in which one or another would be easier. For example, if instead of 4,
15, and 10, we had 8, 26, and 22, it would be easier to apply the first variation, by dividing
8 by 16 to get a half, then multiplying this by the 22 to get 11. The original way has us
multiplying 8 by 22 and then dividing by 16, which is more difficult.

122.2 In case there are fractions, multiply the numbers corresponding to thewealth of the
friends by the least common multiple of their fractional parts. And if the fractions have
common divisors, divide by those factors. The amount of money given to the bankrupt
friend remains the same.

By “they are all different (mutabāyna)” in the passage at 122.10 Ibn al­Bannāʾ means
they are relatively prime. Also, we translate ishtirāk, a word whose ordinary meaning is
“common”, as “common divisor”.

Al­Hawārī considers the situation inwhich a total of 12 dinars is given by three friendswho
have 524 , 625 , and 727 dinars, respectively. He first calculates the least common multiple of
the denominators by collecting factors: a 3 from the third, two 2s from the 4, and nothing
from the 6 because we already have a 2 and a 3. So the least common multiple is 12. The524 , 625 , and 727 are then multiplied by 12 to get 52, 63, and 74. Next he checks to see if
there is a common factor among these numbers that can be cancelled out. In this case, the
numbers are relatively prime. He then finishes the problem, following the rule in the first
example.

123.18 Next, Ibn al­Bannāʾ gives the rule for expressing the result of a denomination
as a related fraction (see below at 135.10 and 138.1 for this type). We saw one example of
this notation already at 119.7, where “two sixths and half a sixth” was written as 2 33 7 .
123.22 The example is to denominate 11 with 15. Decompose the 15 into 5 and 3 and
put them under a line like this:

3 5

Then divide the 11 by the 3 and put the remainder, 2, above it:
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2
3 5

Then divide the quotient 3 from 22 × 4 by the 5. Since 3 is less than 5, 3 is the remainder,
and it too is written above:

2 3
3 5

This is spoken as “three fifths and two thirds of a fifth”, and we might write it in our
notation like this: 46 , 34Բ6 .
This process was followed in situations where the denominating number is composite and
greater than ten. It was convention that the denominators descend. One said “three fifths
and two thirds of a fifth”, 3 44 6 , rather than “two thirds and a fifth of a third” 2 36 4 . Also,
it was preferred to start with the largest possible denominator, so we read “half a sixth”
more often than “a third of a fourth”.

124.8 There are three “lesser known” ways to denominate. Al­Hawārī’s example of
the first is to denominate 4 with 12. He switches the numbers and divides 12 by 4, then
denominates 1 with the result. Here 23 × 5 > 4, and the denomination gives 24 . This works
best in simple cases where there is a common factor. It would not work so well with a
problem like 22 × 26, since 26 × 22 > 2 522 , and it would be too difficult to denominate 1
by this number. This method uses the property that ূৃ > 20 ৃূ .
His example for the second way is to denominate 9 with 15. Denominating 1 with the 15
gives “a third of a fifth”, or 2 14 6 . Multiplying this by 9 gives “three fifths”, or 46 . Here, to
find ূ × ৃ, one first finds 2 × ৃ, then the result is multiplied by ূ.
In the third way, al­Hawārī denominates 10 with 16. The idea is to turn denomination into
division by multiplying the 10 by some number to make it greater than 16. He chooses 8,
to get 21 · 9 > 91. Dividing this by 16 gives 5, and to compensate for the multiplied 8
he denominates the result with 8 to get 69 . This works best when the new numerator (here
80) is a multiple of the denominator, and the method is convenient only when there is a
common factor (in this case 2). In modern notation, the motive becomes somewhat lost:
if ূ = ৃ then ূৃ > ূৄৃ 0ৄ.
124.20 Ibn al­Bannāʾ now turns to the decomposition of numbers into their prime
factors. This will be useful later in the manipulations of the denominators of fractions.
He gives several rules, some of which warrant explanation because of the way they are
worded.

The first case is a number that “does not begin with units”. Recall that the units are 1, 2,
…, 9. The 0, signifying nothing, stands for an empty place. So a number that “does not
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begin with units” has a 0 in the units place, and is divisible by 10, 5, and 2. This is what
he means when he says that it “has a tenth and a fifth and a half”.

125.5 One way of finding factors is to consider the residue after casting out nines or
eights or sevens. Ibn al­Bannāʾ first covers various cases for a number whose units digit
is even. The result of casting out nines is also the remainder after dividing by 9, so from
this we can tell if the number is divisible by 3 or 9. If it is cast out entirely by nines – in
other words, if nothing is left – then the number “has a ninth and a sixth and a third”, or,
in our language, it is divisible by 9, 6, and 3.

Al­Hawārī gives the example of 36. He does not mention that it is also divisible by 18.
There is no need to say it is divisible by 2 since the number is already known to be even.
If the residue is 3 or 6 then the number is divisible by 3, and because we already knew it
was even, it is also divisible by 6. Al­Hawārī gives the examples 66 and 42.

If the residue is some other number (1, 2, 4, 5, 7, or 8), then cast out eights. If it is cast out
entirely then the number is divisible by 8 and 4, and if the residue is 4, then it is divisible
by 4. If the residue is some other number, then cast out sevens. Because 7 is prime, the
only rule is that if it is cast out entirely then the number is divisible by 7.

Similar rules are then given for odd numbers.

126.14 Subsection on finding deaf parts.

If all these rules have been applied and the original number is still not decomposed com­
pletely, “then look for deaf parts by dividing by them”. (We explain the term “deaf part”,
meaning “prime”, below at 134.2.)

127.9 To find deaf parts, Ibn al­Bannāʾ explains how to draw a table of odd numbers
to make the sieve. This is the famous “sieve of Eratosthenes”, after the third century BC
Greek mathematician. Ibn al­Bannāʾ’s description ultimately derives from Nicomachus’s
Arithmetical Introduction.28 Al­Hawārī draws the table to find the prime numbers less
than 145. The first number in the table is 3, which is prime. Putting a bar over every third
number after that gives:

28 (Nicomachus 1959, 31); (Nicomachus 1938, 203ff).
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19 17 26 13 11 : 7 5 3

37 35 44 31 29 38 25 23 32
55 53 62 49 47 56 43 41 4:
73 71 7: 67 65 74 61 59 68
91 89 98 85 83 92 79 77 86
109 107 216 103 101 :: 97 95 :4
127 125 234 121 119 228 115 113 222
145 143 252 139 137 246 133 131 23:

The next number in the table without a bar is the 5, so it is prime. Put a bar likewise above
every fifth number after it, starting with 15, 25, etc. Then do the same for the next number
without a bar, which is 7, then for 11. There is no need to do this for 13 or any greater
prime, since their squares are greater than 145. The table should now look like this:

19 17 26 13 11 : 7 5 3

37 46 44 31 29 38 36 23 32
66 53 62 5: 47 56 43 41 4:
73 71 7: 67 76 74 61 59 68
:2 89 98 96 83 92 79 88 86
109 107 216 103 101 :: 97 :6 :4
127 236 234 232 22: 228 226 113 222
256 254 252 139 137 246 244 131 23:

Numbers with a bar are composite, and the remaining numbers are prime. Al­Hawārī
writes that “these deaf parts are counted only by one”, or as we would say, prime numbers
are divisible only by 1. One can say, for example, that 5 counts 40 because one can count
to 40 by fives. But one cannot count to a prime number by anything but ones.

128.1 Al­Hawārī writes that he is filling the table to 145, but below that he writes that we
know, presumably from the table, that 151 is prime. The Oxford and Medina manuscripts
show the table to 145, while the Tunis and Tehran manuscripts show it to 199. The table
in the Istanbul manuscript is drawn with 15 columns and 10 rows. The copyist must have
been confused. He began by filling in the odd numbers, from 3 to 37, and then continued
by writing in only prime numbers from 83 to 157. The rest of the squares are blank, and
no marks are drawn above any number.

129.1 Section I.1.6. Restoration and reduction.
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In problems involving proportion it is often necessary to restore or reduce a number to
another number. “Restoration” (al­jabr) is what we do when we want to increase a number
to a greater number, and “reduction” (al­ḥaṭṭ) is for reducing a number to a smaller number.
These operations are applied, for instance, to set the “coefficient” of the highest power in
an algebraic equation to 1 (at 217.1). Al­jabr is also the word used in the simplification
of subtractions and equations in algebra (in the text at 211.2, 220.5, 223.1, and in our
commentary at 223.1). Restoration and reduction of fractions is covered at 154.1.

131.1 Chapter I.2. Fractions.

Fractions in Arabic arithmetic are numbers that result from partitioning the unit. Ibn al­
Bannāʾ, for example, writes in the passage at 137.1 the fraction “fifteen…parts of twenty­
four parts of the unit” (2635 ). The unit is partitioned into 24 parts, and the fraction is 15
of those parts. But to define fractions, Ibn al­Bannāʾ feels obliged to respect the Greek
notion that the unit is indivisible. Because of this he identifies fractions with ratios of
whole numbers, so the fraction just mentioned is considered to be the ratio of 15 to 24. A
ratio according to Euclid is “a sort of relation in respect of size between two magnitudes of
the same kind”.29 Ratios are not mathematical objects in themselves, but are only relations
between such objects. This way, the unit maintains its integrity. Ibn al­Bannāʾ’s definition
only serves to provide Arabic fractions with a semblance of a Greek foundation. It had
no impact on actual calculations, and in Arabic arithmetic books, al­Hawārī’s included,
fractions were understood to be fractional portions of the unit.30

Euclid defines “part” and “parts” at the beginning of Elements, Book VII, the first of his
three books on number theory: “A number is a part of a number, the less of the greater,
when it measures the greater…” For example, four is “a part” of twelve because twelve can
be broken into three equal parts, each one of them four. He continues, “…but partswhen it
does not measure it”.31 Eight, for example, is “parts” of fourteen because, if we consider
the number two as one part, then eight is four of the seven parts making up fourteen, or, as
we might say, eight is four­sevenths of fourteen. Similarly, five is “parts” of twelve where
one part is the unit.

The Greek term meaning “part” is translated into Arabic as juzʾ. This is the same word
meaning “part” used in the statements of simple fractions in Arabic with (usually prime)
denominators greater than ten, like Ibn al­Bannāʾ’s 2635 quoted above. The big difference
is that in Greek “a part” is always a positive integer that is part of a greater integer, while
in Arabic fractions it is the unit itself that is partitioned.

We describe the different ways Arabic arithmeticians expressed fractions below at 134.2.
It is there that we explain Ibn al­Bannāʾ’s phrase “the part and its name”.

133.3 Al­Hawārī goes further than his teacher in addressing the ontology of fractions.
Had he worked with the common notion of fractions as parts of a divisible unit, he could

29 Book V, Definition 3 of the Elements (Euclid 1956, vol. 2, 114). The word “size” here is translated from
pēlikotēs, which was translated into Arabic as qadr. The meaning of pēlikotēs in the Book V definition is
not yet that of numerical size.
30 The desire to validate fractions as ratios goes back at least to the tenth century, when Abū l­Wafāʾ also
defined fractions as ratios of whole numbers (Saidan 1971, 71).
31 (Euclid 1956, vol. 2, 277).
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have written that a fraction like “three sixths” is named in terms of sixths, much like “three
cats” is named in terms of cats. In both cases the “three” modifies the name. But al­Hawārī
follows Ibn al­Bannāʾ in formally identifying fractions with ratios. He argues that the ratio
of three to six is not named in terms of either number, nor in terms of the two together.32

Al­Hawārī’s distinction between “sensible” and “intelligible” ultimately comes from
Aristotle. For Aristotle, mathematical objects are sensible objects. We experience lines,
squares, spheres, and numbers through our senses as attributes of the physical things we
see and touch. But a ratio, being a relation between two objects, cannot be apprehended
through the senses. It is an intelligible object that can only be imagined in the mind.33
Al­Hawārī’s statement that ratios are intelligible objects is the only philosophical obser­
vation he makes in the book. We suspected that he may have copied it from somewhere,
so we checked the obvious places: Aristotle, Ibn Sīnā, and Ibn al­Bannāʾ. Aristotle makes
no comment on the ontology of ratios in his extant works, nor did we find anything in Ibn
al­Bannāʾ’s writings. But we did find this remark of Ibn Sīnā on relations in general: “As
for predicating [the quiddity of the relative] with respect to another, this occurs only in
the mind”.34

We set this aside for a moment and continue with the rest of the passage. Al­Hawārī next
paraphrases Ibn al­Bannāʾ’s Lifting the Veil35 when he explains the word “fraction” by
comparing a fractional number with fractured land. Perhaps he was thinking of the incre­
mental increase of fractions with the same denominator, like 228 , 328 , 428 , etc., that model the
incremental strata of some rocky landscape. He also compares fractions with geometric
magnitudes, probably because lines, surfaces, and bodies can be partitioned into arbitrarily
many parts. Al­Hawārī contrasts these continuous magnitudes with “discrete quantities”,
echoing the notion in Aristotle and Euclid that numbers do not admit fractions due to the
indivisibility of the unit.

We contend that Ibn al­Bannāʾ related nearly the entire passage at 133.3, from “For ex­
ample…” to “…similar abstractions”, verbally to al­Hawārī. Ibn al­Bannāʾ was familiar
with Ibn Sīnā’s work, and al­Hawārī paraphrased rather than quoted Ibn al­Bannāʾ’s com­
parison of fractions with terrain from Lifting the Veil.

134.1 Section I.2.1. The names of fractions and numerating them.

134.2 Fractions in most Arabic books on Indian arithmetic, al­Hawārī’s included, are
borrowed from finger­reckoning. This particular system has its origin in the ancient Egyp­
tian practice of expressing fractions as sums of unit fractions, like writing 36 as the sum

32 The “separation” he speaks of may be the preposition “to” (ilā) in the phrase “the ratio of three to six”.
Or it may be the mark one makes when writing ratios in notation. Al­Mawāḥidī, another commentator of
the Condensed Book, uses the generic “ ԲԲԲ ” which also serves to separate numbers in other contexts. The
proportion 4 ң 5 ңң 7 ң 9 is written as “8 ԲԲԲ 6 ԲԲԲ 4 ԲԲԲ 3” in (al­Mawāḥidī manuscript, fol. 78a).
33 We also find intelligible mathematical objects in al­Khayyām (Omar Khayyam), who followed Aristotle
closely. He wrote that while one­, two­, and three­dimensional algebraic powers correspond to geometric
magnitudes that exist in sensible things, the zero degree term and powers higher than three are not associated
with any sensible objects. These objects are instead “imagined in the continuous magnitudes”, or are “taken
as abstracted in the intellect from material things”. See (Oaks 2011a); (Rashed and Vahabzadeh 2000, 171).
34 (Avicenna 2005, 122).
35 (Ibn al­Bannāʾ 1994, 270.3­4).
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of 24 and 226 . It was later modified, probably by Greek calculators, with approximation
techniques based in sexagesimal arithmetic.36

At some point before the ninth century CE the restriction to unit fractions was dropped.
One could now say fractions like “five sevenths” and “two ninths”. But in Arabic fractions
could only be formed from nine names, or “heads” (ruʾūs): “a half”, “a third”, “a fourth”,
up to “a tenth”. There were no words in Arabic for “eleventh”, “twelfth”, “thirteenth”,
etc., so fractions with denominators greater than ten were expressed when possible by
combinations of the heads. For instance, al­Khwārazmī wrote “a fifth and four fifths of a
fifth” for :36 and “a ninth and a tenth” for 2::1 .37 The various ways of combining the heads
already present in ninth century texts remained common throughout the medieval period,
and are explained by al­Hawārī in the present section.

Numbers in medieval Arabic that could be expressed in words were called “expressible”
(munṭaq).38 These included integers and fractions reducible to combinations of the heads.
Numbers inexpressible in words, for which only approximations could be found, were
often called “deaf” (aṣamm). These included irrational roots, and also fractions irreducible
to combinations of the heads, that is, fractions whose denominators contain prime factors
greater than ten. The problem of deaf fractions was overcome some time before the early
ninth century with the introduction of “parts”. For example, al­Khwārazmī wrote 524 as
“four parts of thirteen parts of a dirham”.39 With the dirham divided into thirteen equal
parts, the fraction is four of those parts. So now, in addition to being able to say “four
fifths” and “four sevenths”, one could say “four parts”. Thus, “a part” became the tenth
name for the naming of fractions.

This accounts for the origin of the term “deaf parts” for prime numbers, above at 126.14. To
express the result of a denomination as a related fraction, explained at 123.18 above, one
needs to find the prime factorization of the denominated number. If this number contains
a factor not divisible by 2, 3, 5, or 7, then one needs to look for “deaf parts”, that is, to find
the greater prime denominators required for the fraction. The example at 151.14 results
in “fifty parts of one hundred thirty­seven parts and five ninths of a part of one hundred
thirty­seven parts”. The deaf parts here are the 137 parts. Prime numbers do not quite
coincide with the denominators of deaf fractions, since the former include 2, 3, 5, and 7,
but the association was close enough.

In arithmetic, the naming of fractions with parts typically terminates with “of a unit/one”
or “of a dirham” (units were often counted in dirhams, a silver coin, in many calculations).
In one problem al­Karajī writes “thirty­five parts of eighty­three parts of a unit” and then,
just after, “thirty­four parts of eighty­three parts of a dirham”.40 Often, as in al­Hawārī,
the designation is left off altogether. So his “a part of eleven” is short for “a part of eleven
parts of one/a unit/a dirham”. Also, it is not just abstract units that are partitioned in Arabic
fractions. In the inheritance problems solved by al­Khwārazmī it is sometimes a share of
the estate, as in “twenty­three parts of fifty­nine parts of a share”,41 and in the context of

36 (al­Uqlīdisī 1978, 11).
37 (al­Khwārizmī 2009, 147.15, 253.19).
38 Our authors use this word to mean “irrational”. See below at 163.2.
39 (al­Khwārizmī 2009, 169.14).
40 (Saidan 1986, 181.12,14).
41 (al­Khwārizmī 2009, 265.7).
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algebra Abū Kāmil writes “fifteen parts of thirty­nine parts of a thing”, where the “thing”
is the name of the first degree unknown.42

Grammatically, the ten names function like other Arabic nouns. Saying “three fourths”
or “three parts” is like saying “three apples”. The “fourths”, “parts”, and “apples” are the
names, or kinds of object counted, while the “three” tells how many there are (the same
applies also to “shares” and “things”). Our own words “numerator” and “denominator”
reflect this idea. The word “denominator” derives from the Latin dēnōmināre, “to call, to
name”, and our word “name” comes from the related Latin word nōmen. Our “numerator”
is the “number” of this name.

There was no rule that the language of parts could only be used for deaf fractions. Al­
Khwārazmī and Abū Kāmil routinely use it to name fractions like 3647 , 2526 , 623 , and 536 .
And when convenient for the calculations the fraction can even be improper, like al­
Khwārazmī’s “twenty­eight parts of thirteen of a dirham”.43 Al­Hawārī, though, works
with combinations of the heads whenever possible, and his numerator is always less than
his denominator.

Although schoolbooks today often still explain fractions in terms of parts, mathematicians
define them in terms of division. The value of al­Khwārazmī’s “four parts of thirteen parts
of a dirham” may be equal to the result of dividing 4 by 13, but the two ways of regarding
fractions are not equivalent. With quotients in mind, we allow numerators and denomina­
tors to be irrational, like 2҇3 and ҇33 . But these numbers cannot be fractions in medieval
Arabic. The first makes no sense because one cannot partition the unit (or anything else,
for that matter) into an irrational number of parts. And the second does not work because
the number of parts making up a fraction cannot be irrational. To have ҇3 parts is just as
meaningless as having ҇3 loaves of bread. One can perform the corresponding divisions,
however, to get the acceptable “root of a half” (ำ23 ). We explain this below at 188.1.

135.1 When the denominator is a composite number greater than ten it was common
to express it with “two or more names”. Al­Hawārī’s first example is “two eighths and a
seventh of an eighth”, which in notation looks like this: 2 38 9 . We can write this as a modern
fraction by working it out to get 2667 . Although it may sound overly complicated to us,
saying “two eighths and a seventh of an eighth” gives a good idea of the magnitude of
the fraction. We know that “two eighths” is a fourth, and we are adding to that the small
amount “a seventh of an eighth”. The fraction is expressly presented as being just a little
over 39 , while with our 2667 this is not immediately clear. One of us even found himself
thinking in terms of these fractions while measuring wood with a ruler scaled in inches.
The fractional part was clearly three fourths and a fourth of a fourth, and it would have
been much less transparent as well as superfluous to convert 2 45 5 to 2427 . We can all grasp
the magnitudes of the fractions 23 , 24 - Ϳ - 221 , and combinations of these are often easier to
understand than fractions with large composite denominators.

42 (Abū Kāmil 2012, 471.5).
43 (al­Khwārizmī 2009, 169.13).
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An example in which the related fraction is not easier to grasp is Ibn al­Bannāʾ’s artificial
example 3 5 64 6 7 (at 135.10 below), which is equal to 9::1 . And just as our fractions do not
admit of a unique representation (23 > 35 > 47 etc.), related fractions can be written in many
ways. One example is al­Hawārī’s 4 57 : in the example at 171.6, which is equal to 23 .
Al­Hawārī uses the language of parts when the denominator is not prime in only two
instances, at 155.2 and 156.7. There the denominators are 87 and 93.44

135.8 To expand on Ibn al­Bannāʾs remark, al­Hawārī copies Lifting the Veil from
135.10 to 137.10 to explain how to find the numerators of three kinds of fractions: related,
distinct, and portioned. These types are covered again immediately after by al­Hawārī
himself, along with other types. Finding the numerator is necessary to perform every kind
of operation: addition, subtraction (including casting out, above at 93.9), multiplication,
division/denomination, conversion, and finding square roots.

135.10 Ibn al­Bannāʾ works with the example 3 5 64 6 7 to show how to find the numerator
and denominator of a related fraction. These fractions are expressed with more than one
name, or denominator, so that each part is related to, or is a fraction of, what precedes it.
In this example, the 5 in the top is multiplied by the second denominator, also a 5, to get
25, and this is added to the 4 to get 29. So the first two terms of the fraction are equivalent
to 3:6Բ7 , or 3:41 . Then this 29 is multiplied by the 3 to get 87, which is added to the 2 above,
resulting in the numerator 89. The fraction is the same as our 9::1 .
136.8 Sometimes two fractions are gathered with the conjunction “and” (wa), like the
example “five sixths and four fifths”. In notation, one is written next to the other like this:56 67 . This is called a distinct fraction, and its value is the sum of the individual fractions.
To find the numerator, Ibn al­Bannāʾ multiplies the 67 by the denominator 5 of the other
fraction to get 3641 (though he does not name this fraction). He then multiplies the 56 by the
6 to get 3541 . Together they are 5:41 , or forty­nine “parts of thirty” (or “fifths of sixths” or
“sixths of fifths”), so the numerator is 49.

137.1 A portioned fraction is one like “three fourths of five sixths”, written as 6 ͽ 47 ͽ 5 .
This may be equivalent to the product of the fractions, but it was conceived and stated as
a fraction of a fraction. In modern notation the example becomes 2635 .
137.11 Al­Hawārī now returns to commenting on the Condensed Book. Ibn al­Bannāʾ
names five different kinds of fraction, and al­Hawārī shows how to find the numerator of
each.

137.13 Simple fractions. The numerator of a simple fraction, like “a seventh”, written 28 ,
is the number above the line. From the example at 139.2, we know that for Ibn al­Bannāʾ
simple fractions are not restricted to those with a numerator of 1. So a fraction like “four
sixths” (57 ) is also simple, and its numerator is the 4 above the line.
44 Ibn al­Bannāʾ’s example 2635 at 137.1 is first stated in terms of “fourths of a sixth”, and the version in terms
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Combined fractions. This may not have been considered as a separate type since neither al­
Hawārī nor Ibn al­Bannāʾ describe it. A combined fraction is a fraction whose representa­
tion has all 0s in the numerator except on the extreme left, like Ibn al­Yāsamīn’s 32 1 1 13 7 24 8 . In
modern notation, the fraction is 323Բ7Բ24Բ8 , or 3221:3 , and the numerator is 21. (Ibn al­Yāsamīn
preferred to write his fractions in reverse order, so he shows it like this: 1 1 1 328 24 7 3 .45)

138.1 Related fractions. A related fraction is the common type with “two or more
names”, which we have seen several times already. Al­Hawārī’s example is 3 4 5 64 6 8 9 . Ibn
al­Bannāʾ gave two rules, the first being the same as the one from Lifting the Veil cited
above at 135.10. The fraction can be written in modern form as 6:74Բ6Բ8Բ9 > 6:7951 . The second
rule is explained as clearly as the first.

139.1 Distinct fractions. Distinct fractions are those that are added, or gathered together.
They have already been described above at 136.8. Al­Hawārī finds the numerator for “five
sevenths and half a seventh and four sixths”. In notation this is 57 2 63 8 , which we would
write as 2225 , 57 . Combining them is equivalent to our method of cross multiplication, so
the numerator is 22 Բ 7 , 5 Բ 25 > 233.
139.10 Portioned fractions. The numerator of fractions of fractions is the product of
the individual numerators. These were described above at 137.1.

140.1 Excluded fractions of disconnected type. These are called “excluded” because they
are expressed as a fraction removed or excluded from a greater fraction. For an explanation
of the terms “less”, “diminished”, and “excluded”, see our remarks at 219.4 below. They
are “disconnected” because the second fraction is not taken of the first fraction, but is
independent of it. The example here is “six eighths less a ninth”, written as 2: ϊ79 . This
fraction is drawn in the Medina manuscript as . (See our commentary above at
86.1 for an explanation of the sign for “less”.) In modern notation we write it as 79 ѿ 2: .
By “is not taken from what precedes it”, al­Hawārī means that this is not 79 ѿ 2: ๟79๠. The
procedure is like that for distinct fractions, but involves taking the difference rather than
the sum of the products. Here 7 · : > 65, and 2 · 9 > 9. The numerator is 65 ѿ 9 > 57.
140.14 Excluded fractions of connected type. Al­Hawārī converts the example “a half
less its third” to the disconnected version “a half less a sixth”. He then finds the numerator
of “six sevenths and half a seventh less its third”. By “its third” he means that you take
away a third of the six sevenths and half a seventh. In notation it is written just like an
excluded fraction of disconnected type, 24 ϊ2 73 8 , though themeaning is different. Inmodern
notation we would write 2 73 8 as 2425 , and the whole fraction is equivalent to our 2425 ѿ 24 ๟2425๠.
Take the numerator of the greater part, which is 2 73 8 , to get 13, and multiply it by the

of “twenty­fourths” is only added to show the denominator.
45 (Zemouli 1993, 171). On Ibn al­Yāsamīn’s way of writing numbers, see (Abdeljaouad 2005b).
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denominator of the smaller part, which is 3, to get 39. Then multiply the two numerators:2 · 24 > 24. The numerator is then 4: ѿ 24 > 37, and the fraction is equal to 3753 .
Theword “connected” for excluded fractions takes the samemeaning as theword “related”
for related fractions, in that the fraction that follows is taken as a portion of the preceding
fraction. So it is natural that in caseswhere the diminished amount is itself a related fraction
the notation was sometimes written with a single bar. For this example, if the “less” were
instead an “and”, it would have been “six sevenths and half a seventh and a third of a
half of a seventh”, or 2 2 74 3 8 . When the last fraction is taken away instead of added, as in

“six sevenths and half a seventh less its third”, it might be written as 2 ϊ2 74 3 8 instead of
the ambiguous 24 ϊ2 73 8 . Four of the five manuscripts we consulted show the latter, but the

Tehran manuscript shows the fraction with the bar extending all the way across:
(this manuscript shows the Eastern forms of the numerals).

It was not a problem to have one notation with two possible meanings. While working
through a problem, one knows whether the fraction is connected or disconnected. Notation
was used by the individual to perform calculations, not to communicate the work to others
or to preserve a record for future consultation. A rhetorical version served those purposes,
and there the ambiguity is erased by the language.

141.7 Al­Hawārī then gives some “additional remarks” of Ibn al­Bannāʾ’s. Recall from
86.1 above that an expression like “ten less eight less seven less five less two” is 21 ѿ )9 ѿ)8 ѿ )6 ѿ 3***. Here Ibn al­Bannāʾ explains that when the word “and” (wa) appears before
each “less”, then the numbers are all taken away from the first term. Al­Hawārī’s example
is “five and a third less its fourth and less its seventh and less its fifth”, and is written in
notation as 26 ϊ28 ϊ25 ϊ24 6. We might write it as 6 24 ѿ 25 ๟6 24๠ ѿ 28 ๟6 24๠ ѿ 26 ๟6 24๠. The
figure can be reduced to 26 28 25 ϊ24 6, with a single “less”.
The “particle of exclusion” is most often the word “less” (illā), as it is here. But sometimes
in Arabic mathematics other words, meaning “except” or “other than” (ghayr or siwa), are
used. The Arabic word for “detached” (munfaṣil) is related to the word we later translate
as “apotome” (munfaṣila) in the chapter on roots. See our remarks below at 173.10.

142.6 Here al­Hawārī gives a disconnected example. If we said “five and a third less a
fourth of one and less a seventh of one and less a fifth of one” it would be equivalent to
the modern 624 ѿ 25 ѿ 28 ѿ 26 , or 624 ѿ 94251 > 2::2531 . He does not show the notation for this.

142.10 Again quoting Ibn al­Bannāʾ, al­Hawārī explains the meaning of the repeated
“less” and cites the same rule given at 86.9 for whole numbers. He does this for the con­
nected type (like “…less its fifth”) and the disconnected type (like “…less a fifth of one”
or simply “…less a fifth”). He does not mention that the work starts from the last term.

143.1 The “three of its fourths” must become disconnected from the “five sixths”. So
the fraction is rephrased as an excluded fraction of disconnected type.
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143.5 Al­Hawārī finds the numerator for the mixed fraction 4 65 7 6, or 6 3435 in modern
notation. He first multiplies the whole number 5 by the two denominators to get 120. He
then adds this to the numerator of the fraction, which is 23, to get 143. We can write the
number as the fraction 25435 .
143.13 If the whole number comes after the fraction (that is, it is placed on the left), then
the number is the fraction of the whole number. Al­Hawārī’s example is 21 79 58 , which is
“four sevenths and six eighths of ten” whichwemight write as๟58 , 79๠Բ21. The numerator
of the fractions is 74, since together they are 8567 . Multiply this 74 by the 10 to get the
numerator 740.

144.4 If the whole number is written between two fractions, then it might be attached
to the first fraction or to the second. If it is attached to the first, or “to what precedes it”,
then one proceeds as in al­Hawārī’s example 47 6 5: , which is “four ninths of five, and three
sixths”. That is, take 5: of 5, then add 47 . Al­Hawārī multiplies the 4 by the 5 to get 20, the
numerator of the first part. We can now look at it as the addition of 47 to 31: . He effectively
cross multiplies, adding 31 · 7 to 4 · : to get the numerator 147.
145.1 The whole number might be attached to the second fraction, or “what is after
it”. Al­Hawārī’s example is “two thirds of seven and four sevenths”, or 58 8 34 . In modern
notation this is equivalent to 34 Բ ๟8 58๠. First we find the numerator of the mixed fraction8 58 to get 53. The problem is now 34 Բ 648 . Then the 53 is multiplied by the 2 to get 106,
which is the numerator.

As we explained above at 140.14, the ambiguity of the notation is not problematic for the
person working through the calculations.

146.3 Al­Hawārī often does not cancel common factors in his fractions. Themost glaring
examples could have been simplified easily, like “four sixths” at 139.2, “six eighths” at
140.8, and “three sixths” at 144.10. But here Ibn al­Bannāʾ states that one must decompose
the numerator and denominator into their prime factors and cancel the common factors,
and al­Hawārī explains it for the case of portioned fractions.

147.1 Section I.2.2. Adding and subtracting fractions.

147.2 Now we turn to operating on fractions, beginning with addition. To add two
fractions Ibn al­Bannāʾ gives the rule that one multiplies the numerator of each fraction
by the denominator of the other, and then the sum of the results is divided by the product of
the denominators. Al­Hawārī’s example is to add 79 56 4 to 2 4 53 9 21 . He gives instructions to
put the addend over the augend. The operations are clearer if we write the first fraction as29351 and the second as 82271 . Hemultiplies 182 by 160 to get 29,120. Next he multiplies 71 by
40 to get 2,840. Adding 29,120 to 2,840 gives 31,960, which is the numerator of the sum.
The denominator is the product of the denominators of the two numbers: 51·271 > 7-511.
So the sum is 42-:717-511 , which he prefers to express as “four and nine tenths and seven eighths
of a tenth and half an eighth of a tenth”, and to write as 2 8 :3 9 215.
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Al­Hawārī then remarks “And its answer is given by (bi­) five”. This might be read as an
approximation, since the answer, as we would write it, is 526:271 . But phrases like this follow
the sample calculations for the other operations on fractions (subtraction, multiplication,
division, denomination), and the “answer” in these cases is often not close to the number
given. At 149.8, he writes “and its answer is given by one” for the number that as a decimal
is approximately .3246. At 150.2, he writes “And its answer is given by two” for the
number 267 , and at 151.4 he has “And its answer is four” for 4 274 . All we can say is that the
stated “answer” is the smallest whole number greater than the calculated value. Then in
two cases, at 147.15 and 151.14, he writes “And its answer is given by removal/subtraction
(ṭarḥ)”. In these two questions one of the numbers is diminished. We have not been able to
decipher the meanings of these phrases, which in any case are given after the exact answer
to the question is found.

147.15 Al­Hawārī’s next example is to subtract 24 ϊ3 821 from 6 ͽ 47 ͽ 5 5. In our notation this
is 22235 ѿ 4341 . Al­Hawārī rhetorically works through )222Բ41*ѿ)43Բ35* > 3- 673. This is the
numerator of the difference. The denominators of the two fractions are already given as 6,
4, 3, and 10. Al­Hawārī silently cancels a 6, and instead of working with “thirds of fourths
of tenths” he switches to the more customary “halves of sixths of tenths”. The result is
stated as “three and five tenths and three sixths of a tenth and half a sixth of a tenth”, or2 4 63 7 214.
149.1 Section I.2.3. Multiplying fractions.

149.2 Ibn al­Bannāʾ characterizes, or defines, the multiplication of fractions as “the
portioning of one of the two fractions by the amount of the other”. Said a little differently,
one takes the portion of one number according to the fraction of the other, which is of
course also the meaning of portioned fractions described above at 137.1. So to multiply
three fourths by two thirds, for example, one takes two thirds of the three fourths to get one
half. As noted in the text, this definition is different from the definition of multiplication
for whole numbers given at 95.2.

Both definitions work for the multiplication of a whole number by a fraction. The first is to
find “the whole number by the amount of the fraction”. To multiply 10 by 46 , for example,
take 46 of 10 to get 6. By the second definition, one duplicates the fraction as many times
as there are units in the whole number. Duplicating 46 ten times again gives 6.
149.6 The rule for multiplying fractions is just what we know it should be: multiply the
numerators and divide the result by the product of the denominators. Al­Hawārī sets up
his examples the same way he did for adding and subtracting fractions, with one number
placed above the other. To multiply 24 45 by 2 5 46 7 : he multiplies the numerators 13 and 111
to get 1443, which he divides by the denominators 3, 4, 5, 6, and 9. This gives “four ninths
and a fourth of a fifth of a sixth of a ninth”, or 2 1 1 55 6 7 : . He would have arrived at this form
by canceling the common 3 to get 5925Բ6Բ7Բ: , and then by following the rule for denomination
given above at 123.18.
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150.2 In the next example the numbers are set up similarly. The notational versions
are written one above the other, the numerators are found, and the multiplication follows.
Here the numerators of 29 5 24 and 21 3 ͽ 24 ͽ 6 are 33 and 20, respectively, so their product is
660. The denominators are given as 8, 3, 3, and 5. Everything but a leftover 2 and a 3
cancel, so the answer is “one and five sixths”.

151.1 Section I.2.4. Division and denomination.

151.2 This rule is also what we would expect. To divide or denominate ূৃ by or with ৅ৄ ,
divide/denominate ূ৅ by/with ৃৄ. Al­Hawārī’s example for division is to “divide six and
a third by four fifths of seven eighths of three”:

24 7
4 8 ͽ 59 ͽ 6

The numerator of the top fraction is 19, and this is multiplied by the denominator of the
bottom number, which is 40, to get 760. The other numerator and denominator are 84 and
3, and their product is 252. The answer is what we get from dividing 760 by 252, which
is “three and a seventh of a ninth”, or 2 18 : 4. Here the denominators 7 and 9 do not come
from the denominators in the given numbers. To get them, note that 252 goes into 760
three times with a remainder of 4. The fraction 4/252 is the same as 1/63, and 63 is 8 · :.
Thus the remainder is “a seventh of a ninth”.

151.14 The example for denomination is to “denominate three and a fourth less two
ninths of it with six and two eighths and three fifths”. The calculations are easier to follow
if we rewrite the problem as :247 × 38551 . After cancelling eights, the denominator of the
quotient is 1233, which is : Բ 248.
152.9 There is no need to do all this work if the denominators of the two fractions are
the same. In this case, just divide the numerator of the top number by the numerator of
the bottom number. Al­Hawārī again gives examples for both division and denomination,
and his calculations are clear.

153.7 If the numerators are equal, then for division one divides the denominator of the
divisor by the denominator of the dividend, and similarly for the case of denomination.
The example for division is to “divide five by five sixths”. Al­Hawārī notes that the de­
nominator of a whole number is 1, so he divides 6 by 1 to get 6. Similarly, denominating67 with 5 gives “a sixth”.
154.1 Section I.2.5. Restoration and reduction.

This chapter is the version for fractions of Section I.1.6 (at 129.1 above). Ibn al­Bannāʾ
breaks up his explanations of restoration into six “problems”: (1) restoring a fraction to a
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fraction, (2) restoring a fraction to a whole number and a fraction, (3) restoring a fraction
to a whole number, (4) restoring a whole number to a whole number and a fraction, (5)
restoring a whole number and a fraction to a whole number, and (6) restoring a whole
number and a fraction to a whole number and a fraction. He omits the two cases of (a) a
whole number to a fraction, and (b) a whole number and a fraction to a fraction, since in
both cases the first number is necessarily greater than the second, so the problem belongs to
reduction. There are also six types of reduction, this time omitting the two that necessarily
belong to restoration.

The rule is the same as that given above in Section I.1.6. Reviewing one example each
for restoration and reduction should suffice. For the third type of restoration, al­Hawārī
restores “two thirds of five sevenths so that it gives ten”. The answer is found by dividing
10 by 6 ͽ 38 ͽ 4 , which gives 21. This means that to restore 6 ͽ 38 ͽ 4 to 10, one multiplies it by 21.
The example for the first type of reduction is to “reduce seven tenths so that it becomes a
third”. Denominate 24 with 821 to get 2132 , which is “three sevenths and a third of a seventh”,
or 2 44 8 . So, to reduce 821 to 24 one multiplies the 821 by 2 44 8 .
157.1 Section I.2.5. Converting.

Sometimes one wants to change a fraction from one name to another, like from thirds to
fifths. Two thirds, for example, is the same as three and a third fifths. Wemight awkwardly

write this as
4 246 , but it would have been expressed by al­Hawārī as “three fifths and a third

of a fifth”, which in notation is 2 44 6 . Al­Hawārī begins the section on converting (taṣrīf )
by quoting from Lifting the Veil.

157.2 Ibn al­Bannāʾ speaks about two kinds of conversion. The first type “concerns only
the name”. Ibn al­Bannāʾ’s example is to convert “five sixths and three fourths” (45 67 ) to
tenths. “Naming the fraction in tenths” results in “one and five tenths and five sixths of a
tenth”, or 6 67 21 2. Al­Hawārī will illustrate Ibn al­Bannāʾ’s rule below at 158.11.

157.9 The second type “concerns how many of that name, taken as units, are in the
whole [fraction]”. The example asks how many tenths are in 45 67 . Ibn al­Bannāʾ relates
this to the problem of converting whole numbers in the section on multiplication above
at 95.6. The answer is found by multiplying the fraction by 10, so it “does not require
division by the denominator of the converted number” (158.1).

158.7 Al­Hawārī then returns to give the rule in the Condensed Book. His example is
to convert six eighths and four tenths to ninths. The numerator and denominator of the
fraction “to be converted” are 92 and 80. The procedure is to multiply the 92 by the 9,
giving 828, and then this is divided by the 80. We would write the quotient as 213991 , but in
Arabic it is 5 49 21 21. Al­Hawārī writes “four eighths” instead of “a half” because he wants
to keep the same denominators as the original fractions. Dividing this by 9 is easy: 21×: is2:2, and to divide 5 49 21 by 9 one just puts a 1: on the right: 5 4 19 21 : . Gathering them together
gives the answer: 5 4 29 21 : 2. For this problem, al­Hawārī did not bother to rearrange the
denominators in descending order.
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161.1 Chapter I.3. Roots.

163.1 Section I.3.1. Taking a root of a whole number and a root of a fraction.

163.2 The term for “square root” in Arabic was simply “root” (jadhr or jidhr). A root

of a number might be rational, like ҇36 > 6 and ำ5: > 34 , or it might be irrational,
like ҇4 and ำ2836 2. In Ibn al­Bannāʾ and al­Hawārī, as in many Arabic authors, the word
for “rational” is munṭaq, which literally means “expressible”. One can say ำ5: as “two
thirds”, while one cannot say the result of taking a square root of 3 other than as “a root
of three”. Our authors write ghayr munṭaq (“inexpressible”) to mean “irrational”. Since
irrational numbers in medieval mathematics are all surds, we translate this term by “surd”
(recognition of transcendental numbers came only in the nineteenth century). Some other
Arabic texts write aṣamm (“deaf”) for “irrational”, but our authors use this word to mean
“prime” (see our comments at 66.7 and 134.2 above). The corresponding words in other
languages have the same association with speech. In Greek the word for “rational” was
rhêtos, meaning “something that may be said or spoken”, while “irrational” was either
alogos (“deprived of speech”) or arrhêtos (“unsayable”). In medieval Latin the word sur­
dus, meaning “deaf”, was used for “irrational”, and Italian texts show the related word
sordo. The Latin surdus is the origin of our word “surd”.

Roots are expressed in medieval Arabic in a slightly different way than they are in English
today. Where we speak of “the root of ten”, they said “a root of ten”. In modern arithmetic
numbers are unique. There is only one 3, one ҇21, etc. But just as in Greek arithmetic,46
in medieval arithmetic numbers admitted multiplicity. One can have twelve roots of ten,
for example. So when an Arabic arithmetician takes the square root of a number, the result
is expressed with the implied indefinite article. Read “a root of ten” to mean a single҇21.
This may seem to be just a linguistic curiosity, but it becomes relevant in the duplication of
roots and for understanding their preference for single roots as opposed to multiple roots,
discussed below at 179.1. Al­Hawārī will, however, sometimes write “the root” when he
is pointing to a specific quantity in a calculation. This is done with the same intention
as when he writes, for example, “we add the four in the hundreds rank…” (at 75.11).
Other words, like “difference”, “square”, and “ratio”, will lack the definite article, too.
Sometimes we insert a “the” where there is none in the Arabic to make the reading easier.
We did this in the passage at 174.1, for example, where neither “the” in our translation
“the difference between the squares” is in the original (with the exception of “the result”,
the other instances of “the” in that passage are present in the Arabic).

163.4 Ibn al­Bannāʾ differentiates between irrational roots that can be expressed with
the word “root” once, and those that require the word more than once. A number in the
first category, like ำ4 :21 , is said to be “rational in square” because its square is rational,
while “a root of a root of ten” is an example of a “medial” root. In our notation this number

is ำ҇21, which we usually write as 5҇ 21. Rational numbers are also rational in square,
46 (Mueller 1981, 59).
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so when we want to speak of an irrational number that is rational in square we say it is
“rational in square only”.

The phrase “rational in square” is more literally translated as “expressible in power (fī
l­quwwa)”. The phrase fī l­quwwa is a translation of the Greek term dynámei, which ordi­
narily means “in power” or “in value”, but was applied in mathematics to mean the size
of the square on a line or of a number.

The word “medial” (muwassaṭ) is translated from the Greek mésos. Reinterpreting Eu­
clid’s geometric definition of mésos in Elements Proposition X.21 in arithmetical terms,
medial numbers are those that take the form ำ҇৐, where ৐ is a non­square rational.
These “roots of roots” are called “medial” because they are the mean proportion be­

tween 1 and a number rational in square only. For example, the medial ำ҇21 satisfies

2 ң ำ҇21 ңң ำ҇21 ң ҇21. Ibn al­Bannāʾ’s characterization, if taken to the letter,
diverges from the Greek. Other numbers, like ๳ำ҇4 and ำ3 , ҇9 are also expressed
with the word “root” more than once, though it is unlikely that he considered them to be
medial, too.

163.11 Vowels are generally not indicated when writing Arabic, so the word for “root”
shows only the three consonants j­dh­r. Some pronounce this as jidhr and others jadhr.
Ibn al­Bannāʾ preferred the latter.

163.14 Ranks, as well as numbers, are said to either have a root or not have a root.
Every other rank, starting with the units, has a root (the units, hundreds, ten thousands,
etc.), while the remaining ranks have no root (the tens, thousands, hundred thousands,
etc.). As Ibn al­Bannāʾ explains, a rank has a root “if there is a number in it that has a
root”. For example, the number 400 is in the hundreds rank, and it has a root, but none of
the numbers 1,000, 2,000, up to 9,000 have a root.

164.3 – 165.16 Here al­Hawārī copies Ibn al­Bannāʾ’s rules for determining when a
whole number might have a (rational) square root. For example, if the units digit (the
first digit) is a 5, and the tens digit is not a 2, then the number does not have a root.

Squaring numbers of the form :ৎ , ৒ for ৒ > 2- 3- Ϳ- 9 and then casting out nines shows
that the remainder, when it is not cast out entirely, must be a 1, 4, or 7. Determining the
remainders of the squares after casting out eights and sevens works similarly.

166.1 The examples that al­Hawārī and Ibn al­Bannāʾ give for extracting roots are too
small to show fully how the rule works, and no figures are shown in the book. Fortunately,
the same method is explained by Ibn al­Yāsamīn with greater numbers and with some
figures. We give one of his examples here.47

47 (Zemouli 1993, 250).
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To find a root of 876,096 we begin by writing the number on a line, and we mark the first
place with an “r” for “root”, the second place with an “n” for “no root”, alternating “r”s
and “n”s to the last place of the number:

n r n r n r
8 7 6 0 9 6

We start with the last “r” on the left. The number below it is 87, and the greatest square
that can be subtracted from it is 81. So we put its root, 9, under it, and we subtract 81 from
87 and replace the 87 with the remainder:

n r n r n r
6 6 0 9 6
9

The 9 below is then doubled and shifted one place to the right:

n r n r n r
6 6 0 9 6
1 8

Now we look for the greatest digit ৎ such that when we multiply it by the number of the
form “18ৎ” (i.e., 291 , ৎ) it will cancel as much of the 660 above it as possible. This digit
is 3. We put the 3 below the 0, and then start the multiplication. Instead of multiplying the
3 by the 183 at once, Ibn al­Yāsamīn, Ibn al­Bannāʾ, and al­Hawārī perform the multipli­
cation one digit at a time. First we multiply the 3 by the 1 to get 3, and this is subtracted
from the 6 above:

n r n r n r
3 6 0 9 6
1 8 3

Next, we multiply the 3 by the 8 to get 24, and this is subtracted from the 36 above:

n r n r n r
1 2 0 9 6
1 8 3

Then the 3 is multiplied by itself, and the 9 is subtracted from the 120 above:
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n r n r n r
1 1 1 9 6
1 8 3

Now the 3 is doubled, and the 186 is shifted one place to the right:

n r n r n r
1 1 1 9 6

1 8 6

Next, we want the greatest digit ৎ such that when it is multiplied by “186ৎ” it cancels
as much of the 11196 above as possible. This digit is a 6. We put it under the 6, and we
multiply it by 1866, again one digit at a time. Multiplying it by 1 gives 6, and we take 6
away from the 11 above it:

n r n r n r
5 1 9 6
1 8 6 6

Then we multiply the 6 by the 8, and we take 48 away from the 51 above it:

n r n r n r
3 9 6

1 8 6 6

The 6 is then multiplied by the 6 next to it to get 36, and this is subtracted from the 39
above:

n r n r n r
3 6

1 8 6 6

And finally, the 6 is multiplied by itself to get 36, and this cancels the 36 above. The answer
is found by adding the 6 to half of the 1860 that follows it, giving 936. So҇876,096 > :47.
166.9 To find a fractional approximation to a root of a non­square number, Ibn al­Bannāʾ
gives different rules depending on whether or not the remainder is greater than the integer
part of the root. The rule for remainders less than or equal to the root is the well­known
approximation ৎ, ৒3ৎ , where ৎ is the integer part of the root and ৒ is the remainder. The rule
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for greater remainders is the same, but based at the next root up. In modern notation, the
value obtained by this rule is ৎ, ৒,23ৎ,3 , and we can calculate that it is equal to )ৎ,2*, ৒༡3)ৎ,2*
where the remainder ৒༚ is now negative, counting back from )ৎ , 2*3 instead of forward
from ৎ3.
Ibn al­Bannāʾ gives proofs/derivations for this method in Lifting the Veil. These are not
copied by al­Hawārī, so we translate part of one proof here to show the reasoning behind
it. This part covers the case where the approximation to the root is smaller than the true
root. Ibn al­Bannāʾ’s arguments are arithmetical, and to make the reading easier we give
modern algebraic equivalents in brackets. In it, he approximates the fraction ে that is
added to the known root ৎ of a square ৎ3 so that together they equal the unknown root ্
of a greater square ্3. The “surplus” ্3 ѿ ৎ3 is our remainder ৒.

And its cause is that a root of the number is divided into two parts, a root
of the smaller and a fraction [্ > ৎ , ে ]. Multiplying that by itself is like
multiplying each one by itself and one of them by double the other [)ৎ,ে*3 >ৎ3 , ে 3 , ে Բ 3ৎ]. So the surplus between48 the number and the square of the
smaller is equal to a square of the fraction and a product of the fraction by
double a root of the smaller [্3 ѿ ৎ3 > ে 3 , ে Բ 3ৎ]. You are allowed to drop
a square of the fraction, and you make the surplus equal to a product of the
fraction by double a root of the smaller [ে 3 will be small, so we can suppose
that ্3 ѿ ৎ3 > ে Բ 3ৎ]. So divide the surplus by double a root of the smaller,
resulting in the fraction by approximation [ে > ্3ѿৎ33ৎ ].49

He continues: “And it is clear that the resulting fraction is greater than the true fraction,
so the approximation is always in excess of the required root of the number”.50 This is
true for both rules, whether the remainder exceeds the root or not. Reinterpreting the rules
in terms of modern functions, the approximations for the first rule lie on the line tangent
to ে)৘* > ҇৘ at ৘ > ৎ3, where ৎ is the integer part of the root. The approximations
from the second rule lie on the line tangent to ে)৘* > ҇৘ at ৘ > )ৎ , 2*3. We know
that the approximations will always be greater than the actual values because the graph ofে)৘* > ҇৘ is concave down. Ibn al­Bannāʾ’s reasoning is simpler.

Examples are calculated at 167.8, 167,14, and 168.1. Because ৎ can be any approximation
to the root, not just a whole number, Ibn al­Bannāʾ understood that the rule can be iterated.
This is done beginning at 168.8.

166.13 Al­Hawārī’s first example of calculating a square root is to find ҇736. He sets
it up and begins the process according to Ibn al­Bannāʾ’s instructions:

r n r r n r r n r
6 2 5 ܣ 2 2 5 ܣ 2 2 5

2 4

48 Here “surplus (faḍla) between” could be translated as “difference between”, but the notion of a surplus
or excess would be lost.
49 (Ibn al­Bannāʾ 1994, 285.10).
50 (Ibn al­Bannāʾ 1994, 285.15).
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The next digit to be found is the units digit. Because al­Hawārī presumes that 625 is a
perfect square, he knows that it must be a 5: no other unit would produce the 5 in 625.

167.3 He then multiplies the 5 by 4 to get 20, which leaves a 2 when confronted with
the 22 above it. Then the 5 is squared, which cancels the 25 left above:

r n r r n r
2 2 5 ܣ 2 5

4 5 4 5

By “the five and the doubled two after it” he means the 5 in the units place on the lower
line, and half of the 4 (really 40) to its left. The root is then 25.

167.8 Al­Hawārī’s next example is not a perfect square. He finds an approximation to
a root of 20 using the rule from 166.9:

n r n r
2 0 ܣ 4

4

Since the number above is not exhausted and is not greater than the root, he adds to the
root, which is the 4 below, the remainder above divided by twice the root, or 5 × )3 Բ 5*, to
get 523 . A square of 523 is 3125 , which is close to 20.
167.14 The same rule is applied to approximate a root of 54, since the remainder, 5, is
less than the root, 7.

168.1 Al­Hawārī’s next example is to find a root of 92. On the dust­board, it would
have progressed like this:

n r n r
9 2 ܣ 1 1

9

This time, the remainder 11 is greater than the root 9: so he adds 1 to the 11 to get 12,
and he adds 2 to double the root to get 20. Then the fractional part is 12/20, or 3/5. The
approximation is then 46 :. As al­Hawārī notes, its square is 5 16 6 :3. We would write it as:3 536 or :3/27.
168.8 In the approximation method just described, one finds the integer part of the root
first, and the approximation is calculated as a fraction to be added on. This approxima­
tion is greater than the desired root, so Ibn al­Bannāʾ’s rule for obtaining an even closer
approximation is calculated by subtracting off another fraction.
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168.10 In the example of approximating ҇:3, the “close smaller square” is a square of
the integer part of the first approximation :46 , or 9, which is 81, and which is less than 92.
The “close greater square” is a square of :46 , or :3 536 , which is greater than 92.
168.16 To obtain a better approximation with this greater square, he denominates the536 with double the root :46 to get 2231 , or “half a sixth of a tenth”. He subtracts this from
the root :46 to get 2 6 63 7 21 :, or, in our terms, : 82231 . This approximation is more accurate: its
square as a decimal is 92.0000694…

169.1 Another way to get a better approximation is to multiply the original number by
some large square number, take its root, and then divide by a root of that large square. The
example is to approximate a root of 12 by first multiplying the 12 by 16, taking its root, and
then dividing the result by 4. The approximation reached this way is 2 45 8 4, whose square
as a decimal begins 12.00127… If we were to approximate ҇23 by the rule at 166.9 we
would get 234, whose square is 12.25.
169.8 Ibn al­Bannāʾ extends the technique for finding roots of whole numbers by allow­
ing one to put down numbers with fractional parts, and he gives two examples in Lifting
the Veil that are copied by al­Hawārī at 169.10 and 169.17. The statement that “the re­
mainder will be smaller than the remainder with whole numbers” is best illustrated in the
example at 169.17. The remainder after the first step is 45 , which is smaller than the 3 that
would have been the remainder had he worked with whole numbers. When working with
fractions, there is no smallest possible (positive) remainder because one can always find
a closer fraction to the root.

169.10 In Lifting the Veil, Ibn al­Bannāʾ shows how to use the standard rule from 166.1
with fractions to find ҇83: and ҇736. Al­Hawārī copies them in reverse order, doing҇736 first. Instead of choosing the greatest whole number whose square does not exceed
the number above, now a fractional part can be added to that number. The work proceeds
like this:

r n r r n r r n r r n r
6 2 5 ܣ 0 0 0 ܣ 0 0 0 ܣ 0 0 0323 5 5 0

Ibn al­Bannāʾ finds the answer by taking half of the 50 in the last figure.

169.17 The next example is to find a root of 729. The work goes like this:

r n r r n r r n r r n r r n r
7 2 9 ܣ 45 2 9 ܣ 1 0 4 ܣ 1 0 4 ܣ 1 0 4323 323 5 5 2
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From the second to the third figure he calculates that 45 of 100 is 75, so he adds this to the
29 to get 104. In the last step 3 Բ 61 , 33 > 215, so the number on top is exhausted. The
answer is then half of the 50 together with the 2, which is 27.

170.6 The example of calculating ҇211 by adding half the zeros back to ҇2 is clear.
170.10 Al­Hawārī gives examples of taking roots of fractions. There are two methods
to do this. The first is that “you multiply the numerator by the denominator and you divide
a root of the result by the denominator”. This method is preferred when the denominator
is not a perfect square, because you avoid dividing by an ugly fractional approximation of
a root. The second way is to “divide a root of the numerator by a root of the denominator”.
This way is easier if the denominator is a perfect square. In modern notation, in the first
method the square root of the fraction ূৃ is found by calculating ҇ূৃ×ৃ, and in the second
by ҇ূ × ҇ৃ.
170.14 – 173.3 Ibn al­Bannāʾ classifies four kinds of fraction, depending on whether
the numerator and/or the denominator is a square.

As a single fraction, the example at 170.16 is 3647 , and at 171.1 it is 5:5 . The fraction at 171.6
is 3865 , which is the same as 23 . The approximation for its root is equal to 25623163 , which is
correct to four decimal places. Applying the standard method to 23 gives an approximation
of 45 , which is much less accurate.
The fraction at 171.15 is 28627 . For the first method, al­Hawārī multiplies the denominator
by the numerator to get 2800, and he takes a root of the product. The result, 2 593 64 63, is
then divided by 16. For the second method, he calculates a root of 175 as 42424, and he
divides this by 4 to get 5244. He is wrong when he writes “This method is closer than the
first [method]”. The first method is correct to five places, while the second is correct only
to three.

The fraction at 172.12 is :25 .
173.4 Binomials and apotomes.

The only mention of binomials and apotomes in Ibn al­Bannāʾ’s Condensed Book is his
rule for finding their roots at 173.4. He does not explain what binomials and apotomes are,
and he omits their classification into the six types and how to find examples of them. All
that should precede the calculations. He may have inserted this rule as an afterthought,
since the heading for the current section, given above at 163.1, does not cover roots of
irrational numbers: “on taking a root of a whole number and a root of a fraction”.

173.10 Ibn al­Bannāʾ provided the missingmaterial in his Lifting the Veil, and al­Hawārī
copied it from there into his book. This includes the definitions of binomials and apotomes
(173.12­18), the classification of the six types (174.1­13), and the finding of the six bino­
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mials and six apotomes (174.14­175.10). Al­Hawārī then finds a root of a sample binomial
and its apotome by Ibn al­Bannāʾ’s rule (175.11­21).

Then, at 176.1, al­Hawarī gives a variation on Ibn al­Bannāʾ’s rule and applies it to find
roots of examples of each of the six types of binomial and apotome (176.6­177.15). Af­
ter calculating each root, al­Hawārī adds a brief description of it. These descriptions are
translated from Euclid’s Elements, and they are found with this same particular wording
in a number of Arabic geometry and arithmetic books written before al­Hawārī’s time.
In the translation, we put the descriptions in quotation marks to indicate the borrowing.
We do not know al­Hawārī’s immediate source for these descriptions, but they may origi­
nate from al­Ḥajjāj’s translation of the Elements.51 We single them out in part because the
meanings of the terms “medial” and “bimedial” become altered in the arithmetical setting
of al­Hawārī’s book. In Euclid’s geometrical setting medial/bimedial areas are intended,
meaning that it is their sides (square roots) that are medial. Al­Hawārī’s ҇31 (at 177.5),

for example, corresponds to a medial area because its “side”, ำ҇31, is medial. Reading
the Arabic literally, it seems that the number ҇31 itself is being called medial.
We should give two related definitions before proceeding. Two (positive) numbers are
said to be commensurable if their ratio is rational, like ҇23 and ҇38, or any two rational
numbers. Two numbers are commensurable in square if their squares are commensurable.

Examples include ำ҇23 and ำ҇38, 5 and ҇24, and any two commensurable numbers.
Our authors write “numerical ratio” (nisba ʿadadiya, at 174.17) or “in ratio” (min nisba, at
180.8) to mean “commensurable”, and a word whose ordinary meaning is “different” (mu­
tabāyna, at 180.11 and 182.5) for “incommensurable”. There may not have been standard
terms for these meanings.

The nomenclature and theory of binomials and apotomes that was part of Arabic arithmetic
derive from a numerical reading of Book X of Euclid’s Elements.52 Our word “binomial”,
like the original Greek (ek) duo onomatōn, means “two names”. In Arabic, the term for
“binomial” is dhū l­ismīn, meaning “two unified names”. A binomial is a number that can
only be expressed in the form “৘ and ৙”, where the incommensurable numbers ৘ and ৙ are
either rational or rational in square.53 Examples are “eight and a root of sixty” and “a root
of five and a root of three”, which we would write as 9 , ҇71 and ҇6 , ҇4, respectively.
Our 9 , ҇71 contains the arithmetical operation of addition, but as we explain at 219.1

51 We have found the descriptions in three commentaries on Euclid’s Book X: Anonymous (attributed to al­
Māhānī, #82 [M2], ninth century), Sulaymān ibn ʿIṣma al­Samarqandī (#181 [M1], ca. 900), and al­Ahwāzī
(#193 [M1], tenth century); in Ibn Sīnā’s epitome of Euclid’s Elements ([M1], ca. 1000); and in two works
dealing with algebra: al­Karajī’s Marvelous [Book] of Arithmetic (al­Badīʿ) ([M3], early eleventh century.
He gives a minor variation in the descriptions of the second and third apotomes) and Ibn al­Bannāʾ’s Book on
the Fundamentals and Preliminaries in Algebra ([M6], before 1300. Only for binomials). Gregg De Young
writes that Ibn Sīnā’s book “was heavily influenced by, if not based completely upon, the al­Ḥajjāj translation
tradition” (De Young 1991, 665). His evidence comes partly from Ibn Sīnā’s proofs to propositions X.64­66
(De Young 1991, 661). From this, and the fact that their wording is different in the Isḥāq­Thābit translation,
we cautiously attribute the wording of these phrases to the translation of al­Ḥajjāj.
52 Definitions are given in Propositions X.36 and X.73, and the classifications are given in two sets of
definitions presented after Propositions X.47 and X.84.
53 By contrast, commensurable roots can be added to make a single root, like the example at 179.16: ҇3
and ҇9 together are ҇29.
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below, the premodern “eight and a root of sixty” consists instead of two numbers gathered
together.

Ibn al­Bannāʾ’s verb for forming a binomial iswaṣala, “to join” two numbers together (pp.
174­5). Sometimes the related noun muttaṣil, “joining”, takes the place of the usual term
for “binomial”. At 188.19, Ibn al­Bannāʾ spells it out as “[a] joining of two names”, and
in three instances just after that we find it as merely “joining”. On that page we translate
these variants as “binomial” to make the reading clearer, while at 177.9 and 177.15 the
word is better rendered as “joining”.

Al­Hawārī does not show notation for roots, but other authors do. In his 1370 commentary
on Ibn al­Bannāʾ’s Condensed Book, Ibn Qunfudh writes these two binomials in notation

as and .54 Reversing the order of the terms, we can transcribe them as
“9 ҇71” and “҇6 ҇4”, respectively. The letter jīm (!" ) without the dot, for jadhr (“root”),
is placed above the 60, 5, and 3 to indicate square root. We have already seen this way of
writing gathered numbers – one after the other – several times for distinct fractions, first
at 136.8.

Our word “apotome” comes from the Greek word apotomē, meaning “something cut off”,
and the Arabic translation ismunfaṣil, meaning an amount fromwhich something has been
“detached”. Examples are “eight less a root of sixty” and “a root of five less a root of three”.
We write these in modern notation as 9 ѿ ҇71 and ҇6 ѿ ҇4, but again, our operation of
subtraction distorts the premodern idea of a diminished quantity. An apotomewas regarded
as a single quantity from which something has been removed. The “eight less a root of
sixty”, for example, should be thought of as a deficient eight, and not as the subtraction
of something from eight. We explain this more thoroughly below at 219.4. Ibn Qunfudh
shows these two examples in notation with the word illā (“less”) between the numbers:

and .55 We transcribe them as 9 ϊ ҇71 and҇6 ϊ ҇4. This notation is the
same as we have seen for excluded fractions of disconnected type, first at 140.8, and with
an image from the Medina manuscript in our commentary at 140.1. Further, Ibn al­Bannāʾ
and al­Hawārī use the term munfaṣilat with the meaning of “detached” for the excluded
parts of these fractions in the passages at 141.7, 142.6, and 142.10.

Binomials and apotomes are not restricted to the arithmetic of fractions and roots. In al­
gebra, too, the same concepts and notation are behind polynomials. At 183.15, al­Hawārī
makes a direct comparison between the quadratic irrationals of this section and algebraic
expressions: “The principle behind multiplying appended and deleted terms will be cov­
ered in [the chapter on] algebra”.

Euclid’s theory of binomials and apotomes is expressed in a geometric context, so he nec­
essarily takes into account the dimensions of his magnitudes. For example, instead of the
multiplication of two numbers, he writes of the formation of a rectangle from two sides.
He defines a binomial as a line, and lines by their nature cannot have “square roots”. So,
Euclid defines its square root as the side of a square equal in area to a rectangle having
the binomial as one of its sides and a rational line (his version of a unit) for the other side.
This theory was transferred to the setting of numbers in Arabic arithmetic. Numbers are
54 (Ibn Qunfudh manuscript, 197.24, 198.12).
55 (Ibn Qunfudh manuscript, 198.12­13).
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homogeneous and thus dimensionless, so some of Euclid’s distinctions become superflu­
ous.

Because we will be interspersing the notation for binomials and apotomes with calcula­
tions in modern notation, we will express the binomials and apotomes with “,” and “ѿ”
from now until the end of the section. To transcribe them in notation that better reflects
the notation in the texts, omit the “,” and replace the “ѿ” with an “ϊ”. We write them this
way, right­to­left, in the conspectus in Appendix A.

174.1 In Lifting the Veil, Ibn al­Bannāʾ explains the classification of the six types of
binomial and apotome, and al­Hawārī gives examples of each. There are three basic types.
Writing the greater term first, in order they are ৐ � ҇৑, ҇৐ � ৑, and ҇৐ � ҇৑ where both৐ and ৑ are rational, and where one of these values appears under a root it is not a perfect
square. Each of the basic types is divided into two subtypes stemming from a characteristic
of its root. Writing the general binomial in modern notation as ҇ষ , ҇স, in which ষ andস are both rational, ষ ? স, and at most one is a square, al­Hawārī’s rule for calculating

ำ҇ষ , ҇স at 176.1 can be written as

๳23)҇ষ , ҇ষ ѿ স* , ๳23)҇ষ ѿ ҇ষ ѿ স*/
A root of the associated apotome, ำ҇ষ ѿ ҇স, is

๳23)҇ষ , ҇ষ ѿ স* ѿ ๳23)҇ষ ѿ ҇ষ ѿ স*/
In one of the two subtypes ҇ষ is commensurable with ҇ষ ѿ স, so the two terms can
be combined into a single root. This holds for the first three of the six types of binomial/
apotome. In the other subtype the two are incommensurable, and this holds for the last
three of the six types.

Ibn al­Bannāʾ’s classification follows that of Euclid, who gives constructions for each of
the six types of binomial in Propositions X.48­53, and for the six types of apotome in
Propositions X.85­90.

Just as the digits in a number come in ranks, so do numbers expressed with roots. Two
numbers are of the same rank if they are the same “distance” from being rational. Thus

҇6 and ҇32 are of the same rank, as are ำ҇6 and ำ҇32 and the pair ๳ำ҇6 and

๳ำ҇32.
174.14 Euclid then gives constructions for roots of the six binomials in Propositions
X.54­59, and for roots of the six apotomes in Propositions X.91­96. Ibn al­Bannāʾ gives
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numerical rules in place of Euclid’s constructions. We rewrite them below in modern nota­
tion. Al­Hawārī does not give examples here, so we provide our own. In these descriptions
it is assumed that ূ, ৃ, and ৄ are positive rational numbers, and numbers under roots are
positive non­squares.

A number is a first binomial if it can be written in the form ূ , ҇ূ3 ѿ ৃ3, and a first
apotome if it can be written as ূ ѿ ҇ূ3 ѿ ৃ3. If we let ূ > 6 and ৃ > 3, then the binomial
is 6 , ҇32 and the corresponding apotome is 6 ѿ ҇32.
A number is a fourth binomial if it can be written in the form ূ,҇ূ3 ѿ ৃ, where ৃ is not a
perfect square. If ূ > 6 and ৃ > 9, then the fourth binomial is 6 , ҇28 and the associated
apotome is 6 ѿ ҇28.
A number is a second binomial if it can be written in the form ҇ূ3)ূ3 ѿ ৃ3* , )ূ3 ѿ ৃ3*.
A second apotome can be written in the form ҇ূ3)ূ3 ѿ ৃ3* ѿ )ূ3 ѿ ৃ3*. For example, if
we let ূ > 4 and ৃ > 3, the binomial is ҇56 , 6 and the associated apotome is ҇56 ѿ 6.
Medieval mathematicians would say “a root of forty­five” instead of “three roots of five”
because the latter is a collection of three numbers. They preferred the single number ҇56.
See below at 179.1 for more on this. Ibn al­Bannāʾ made an error in defining this type by
writing “a root of their difference” instead of simply “their difference”.

Ibn al­Bannāʾ also made an error in defining the fifth binomial. In our notation his descrip­
tion translates into ҇ূ3 , ৃ3 , ূ. In fact, it should be of the form ҇ূ3 , ৃ , ূ, where҇ূ3 , ৃ is incommensurable with ҇ৃ. If we make ূ > 6 and ৃ > 4, the fifth binomial is҇39 , 6 and the apotome is ҇39 ѿ 6. Al­Hawārī’s example of the fifth binomial at 177.5
below is correct.

A number is a third binomial if it can be written in the form ҇ৄূ3 , ҇ৄ)ূ3 ѿ ৃ3*. If we
let ূ > 6, ৃ > 3, and ৄ > 4, then the third binomial is ҇86 , ҇74 and the associated
apotome is ҇86 ѿ ҇74.
A number is a sixth binomial if it can be written in the form ҇ূ3 , ৃ , ҇ৃ, and if the two
roots are incommensurable. If ূ > 7 and ৃ > 8, then the sixth binomial is ҇54 , ҇8 and
the associated apotome is ҇54 ѿ ҇8.
175.11 Al­Hawārī finds roots of the first binomial 9 , ҇71 and its associated apotome9 ѿ ҇71 (from ূ > 9 and ৃ > 3) by the method given by Ibn al­Bannāʾ at 173.4. We can
rewrite this as the modern formula:

ำ҇ষ � ҇স > ๳23ষ , ำ25ষ 3 ѿ 25স3 � ๳23ষ ѿ ำ25ষ 3 ѿ 25স3/
For the binomial, he subtracts 25 of a square of the smaller (25 of ҇713

is 15) from 25 of
a square of the greater (25 of 93 is 16), leaving 1. Its root is 1. This 1 is added to half of
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the greater term (23 of 8 is 4) to get 5, and it is also subtracted from the 4 to get 3. Then҇6 , ҇4 is a root of 9 , ҇71. He then finds a root of the associated apotome 9 ѿ ҇71
by the same procedure to get ҇6 ѿ ҇4.
176.1 – 177.15 Al­Hawārī gives the variation on the rule for finding roots of binomials
and apotomes that we described above at 174.1, and he applies it to his examples for each
of the six types.

176.1 To find a root of the first binomial 9 , ҇66 (with ূ > 9 and ৃ > 4), take the
difference of their squares 93 ѿ )҇66*3 to get 9, and take its root to get 3. Now figure23)9 , 4* and 23)9 ѿ 4*, and take their roots. A root of the binomial is then ำ623 , ำ323 ,
and a root of the apotome 9ѿ҇66 is ำ623 ѿำ323 . Euclid (Propositions X.54, 91) and the
Arabic translation call the root of the binomial “a binomial” and the root of the apotome
“an apotome”, which is indeed what they are. Al­Hawārī expands these phrases to “one
of the binomials” and “one of the six apotomes”.

176.10 Next, al­Hawārī finds a root of ҇223 , 8, which is an example of the second
binomial (ূ > 5, ৃ > 4). Following the same procedure, )҇223*3 ѿ 83 > 74. Then23)҇223 , ҇74* and 23)҇223 ѿ ҇74* are ำ9645 and ำ245 . (For these steps, al­Hawārī
calculated ҇223 , ҇74 > ҇454 and ҇223 ѿ ҇74 > ҇8. Instructions on how to add
and subtract roots are given below, starting at 179.1.) So a root of the binomial ҇223 , 8
is ๳ำ9645 , ๳ำ245 .
Euclid (Proposition X.55) and the Arabic translation call a root of the second binomial
“the first bimedial”. Euclid defines this term in Proposition X.37: “If two medial straight
lines commensurable in square only and containing a rational rectangle be added together,
the whole is irrational; and let it be called a first bimedial straight line”. Reinterpreting this
in our arithmetical context, the root is called a bimedial because it is composed of the two

medial numbers ๳ำ9645 and ๳ำ245 . They are commensurable in square only because
the ratio of their squares, ำ96450ำ245 , is 7, but their ratio๳ำ96450๳ำ245 is҇8, which
is irrational. The two medial numbers contain a rational rectangle because their product,

๳ำ9645 Բ ๳ำ245 > 423 , is rational.

A root of the second apotome ҇223 ѿ 8 is ๳ำ9645 ѿ ๳ำ245 . Euclid (Proposition X.92)
and the Arabic translation call this “a first apotome of a medial [straight line]”.56 Because

the root was considered to be a diminished ๳ำ9645 , it does not consist of “two names”.
Thus it is medial and not bimedial.

56 We enclose in square brackets English words implied but not present in the Greek, and were thus not
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176.15

Al­Hawārī’s example of the third binomial is҇43,҇25 (ূ > 5, ৃ > 4, and ৄ > 3). Its root
is ๳ำ3523 ,๳ำ23 . This root is called a “second bimedial” in Euclid (Proposition X.56)
and “the binomial of the second bimedial” in the Arabic translation. The second bimedial
is defined in Elements, Proposition X.38: “If two medial straight lines commensurable in
square only and containing a medial rectangle be added together, the whole is irrational;

and let it be called a second bimedial straight line”.57 The bimedial numbers๳ำ3523 and
๳ำ23 are commensurable in square only because the ratio of their squares ำ35230ำ23 is
7, while their ratio is the irrational number ҇8. Their product ๳ำ3523 Բ ๳ำ23 is ำ423 ,
which is irrational. A “medial area” (i.e., a “medial rectangle”) “is the area which is equal
to the square on a medial straight line”.58 In arithmetical terms, the ำ423 is a medial

area because its square root ๳ำ423 is medial. In arithmetic there is no use for such a
designation, because, unlike geometric magnitudes, numbers do not possess dimension.
A “medial area” translated to arithmetic becomes simply a number rational in square only,
or, in other terms, a number of the form ҇৐ where ৐ is a non­square rational.
A root of the corresponding apotome is ๳ำ3523 ѿ๳ำ23 . Euclid (Proposition X.93) and
the Arabic translation call this “a second apotome of a medial [straight line]”.

176.20 Next, al­Hawārī finds a root of 8,҇41, which is an example of the fourth bino­
mial (ূ > 8, ৃ > 2:). Following the same procedure he gets๳423 , ำ545 ,๳423 ѿ ำ545 .
Again, following Euclid (Propositions X.57, X.94) the Arabic translation calls this “the
major” and the corresponding apotome “theminor”. Amajor is defined inElements Propo­
sition X.39: “If two straight lines incommensurable in square which make the sum of the
squares on them rational, but the rectangle contained by them medial, be added together,
the whole straight line is irrational: and let it be called major”.59 In al­Hawārī’s exam­

ple, ๳423 , ำ545 is incommensurable in square with ๳423 ѿ ำ545 because the ratio of

their squares, )423 , ำ545*0)423 ѿ ำ545*, is 3 526 , ำ5 42336 , which is irrational. The sum of
their squares is 7, which is rational. The rectangle contained by them, or their product, is

ำ823 , which is a medial area when interpreted in terms of geometry. The minor is defined
similarly for the apotome in Proposition X.76.

translated into Arabic.
57 (Euclid 1956, vol. 3, 85).
58 This is Heath’s explanation in (Euclid 1956, vol. 3, 55).
59 (Euclid 1956, vol. 3, 87).
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177.5 The example for the fifth binomial is to find a root of 4,҇31 (ূ > 4, ৃ > 22). Its
root by the same procedure is ๳҇6 , ำ345 , ๳҇6 ѿ ำ345 . Euclid (Proposition X.58)
called this “[the line whose] power is a rational and a medial [area]”.60 Here the rational
area is the 3, and the medial area is the ҇31. The Arabic translation is quite literal: “[the
number whose] power is a rational and a medial”, with the result that term “medial” would
be misinterpreted in the arithmetical setting. The number ҇31 is rational in square, not
medial like its square root.

Euclid (Proposition X.95) calls the corresponding apotome ҇31 ѿ 4 “[a straight line]
which produces with a rational [area] a medial whole”.61 In our numbers, the root

๳҇6 , ำ345 ѿ ๳҇6 ѿ ำ345 produces by squaring it the quantity ҇31 ѿ 4 which,

if one adds back the rational area 3, gives the medial area ҇31. The Arabic translation
describes it as “the joining with a rational to become a whole medial”.

The Greek and Arabic words behind “power” in the descriptions “[the line/number whose]
power is a rational and a medial” warrant some explanation. The Greek term is dynaménē,
deriving from dynamis, a wordmeaning “power” or “value”, and in amathematical setting,
“square”. In geometry, a dynamis is a characteristic of a line. One did not make reference
to a dynamis directly by naming its opposite vertexes, but rather to a side in respect of
dynamis. As Jens Høyrup proposed, a dynamis is “a square identified with its side” or “a
line seen under the aspect of a square” (Høyrup 1990, 210). The word often occurs in the
dative form, dynámei (“in power”, or “in square”), as we described above at 163.4 for
the phrase “rational in square”. Thus, our added words “[the line/number whose]” in the
description of the fifth binomial are implied in Euclid’s description.

The forms of the word dynamis in Euclid were translated into Arabic by corresponding
forms of quwwa, a word which also means “power”. This word, too, is a characteristic of
a side or a number. Gustav Junge and William Thomson, in an appendix to their edition
and translation of the medieval Arabic translation of Pappus of Alexandria’s Commentary
on Book X of Euclid’s Elements, wrote this of quwwa:

The Dictionary of Technical Terms (Calcutta, A. Sprenger, Vol. II, p. 1230,
top.) defines it as “Murabbaʿu­l­Khaṭṭi”, i.e., “the square of the line”, “the
square which can be constructed upon the line”, and goes on to say that the
mathematicians treat the square of a line as a power of the line, as if it were
potential in that line as a special attribute. Al­Ṭūsī (Book X, Introd., p. 225, l.
9.) says: ˋ“The line is a length actually (reading “bi­l­fiʿli” for “bi­l­ʿalqi”)62
and a square (murabbaʿun) potentially (bi­l­quwwati) i.e., it is possible for a
square to be described upon it. (Pappus 1930, 181)

So here, too, an Arabic reader familiar with Euclid would have understood the description
as meaning “[the number whose] power is a rational and a medial”. But for a young arith­
metic student studying al­Hawārī’s book, we guess that the meaning of this description,

60 Our translation. Heath translates it as “the side of a rational plus a medial area” (Euclid 1956, vol. 3, 129).
61 (Euclid 1956, vol. 3, 206).
62 We have corrected misplaced quotation marks here.
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and of the others, too, would have been obscure, and would have been read as being mere
labels.

As a last remark on this passage, al­Hawārī writes the fraction “three fourths” in his cal­
culations of the fourth and sixth binomials and apotomes, but here he writes it in the collo­
quial way reminiscent of the unit fractions from finger­reckoning as “a half and a fourth”.

177.11 The example for the sixth binomial is ҇21 , ҇22 (ূ > 2, ৃ > 21), and its
root is ๳23 , ำ345 , ๳ำ345 ѿ 23 . It is called by Euclid (Proposition X.59) “[the line
whose] power [consists of] two medial [areas]”,63 where in this case the medial areas
are the ҇22 and the ҇21. The Arabic translation is again literal: “[the number whose]
power is a bimedial”. And as before, the word “bimedial” takes a different meaning in an
arithmetical context.

Euclid (Proposition X.96) calls the root of the corresponding apotome, here๳23 , ำ345 ѿ
๳ำ345 ѿ 23 , “[a straight line] which produceswith amedial [area] amedial whole”.64 The
root produces by squaring it the apotome ҇22 ѿ ҇21. This is a deficient, or incomplete,҇22, so to make it whole we add to it the medial area ҇21 that it lacks to produce the
whole medial area ҇22. The Arabic translation has “the joining with a medial to become
a whole medial”.

179.1 Section I.3.2. Adding and subtracting roots.

Before plunging into the rules and examples for operating on roots, we must clarify some
distinctions made in medieval arithmetic that are lost in modern notation. Consider the
following:

A. Duplicate a root of five three times. (explained at 186.1)

B. Three roots of five.

C. Multiply three by a root of five. (explained at 183.1)

D. A root of forty­five.

While we might translate each of these into 4҇6, all four were conceived of differently in
their medieval forms. Both (A) and (C) are operations to be performed, while (B) and (D)
are quantities. To “duplicate a root of five three times” in (A) means to collect together
three copies of ҇6. This wording is well­suited for integer multiples, but it cannot work
for irrationals. One cannot duplicate a number ҇34 times, for instance. For fractional
multiples, al­Hawārī’s wording is different. For them, he “partitions” the root (at 186.8).
63 Our translation. Heath translates it as “the side of the sum of two medial areas” (Euclid 1956, vol. 3, 130).
64 (Euclid 1956, vol. 3, 209).
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The immediate and intermediate result of (A), duplicating a root of five three times, is (B),
three roots of five. This quantity was not regarded as a single number like our 4҇6. It is
a collection of three numbers, all of them ҇6. Just as the binomial “eight and a root of
fifty­five” is the pair of numbers 8 and ҇66 gathered together, “three roots of five” is the
gathering of ҇6, ҇6, and ҇6. Likewise, below at 179.20 we will see that “half a root of
twenty” was regarded as being “less than one root”, while “two roots of five” are “more
than one root”. The “half” and the “two” tell us how many roots there are. They are not
the coefficients or scalar multiples that we work with in 23҇31 and 3҇6.
Multiples of a root and fractions of a root are routinely converted to whole, single roots
before operating on them. To convert “three roots of five” to a single number the 3 is
multiplied by the ҇6. To do this the 3 is squared, and the result is multiplied by 5 to get҇56. In other words, one performs (C), and the result is (D). The multiplication in (C) is a
different operation from (A). The most evident difference is that (C) allows any number as
a multiplier. One can multiply ҇8 by ҇6, for instance, to get “a root of thirty­five”. The
result of the multiplication must be a single root. It cannot be anything like our ҇8҇6
since this symbolic amount, like our 4҇6, has no equivalent in medieval arithmetic.
179.2 We noted above at 176.10 that ҇223 , ҇74 > ҇454. This is because, as we
would work it out, ҇223 , ҇74 > ҇27 Բ 8 , ҇: Բ 8 > 5҇8 , 4҇8 > 8҇8 > ҇454. Ibn
al­Bannāʾ gives the rule that two roots can be added or subtracted only if their product is
a perfect square. In this example 223 Բ 74 > 8-167, which is a square of 84. On the other
hand, ҇6 cannot be added to ҇23 to form a single root because 6 Բ23 > 71 is not a square
number.

179.7 Once it is known that two roots can be added, Ibn al­Bannāʾ gives a rule for finding
their sum. Al­Hawārī first applies it to the example of adding҇4 to҇38. Here 4Բ38 > 92
is a square, so the roots can be added. Two roots of 81 are 18, and this is added to 4 , 38
to get 59. Then ҇4 , ҇38 > ҇59. In modern notation, ҇ূ , ҇ৃ > ำূ , ৃ , 3҇ূৃ.
This rule is found in many arithmetic and algebra books, extending back to the Book on
Algebra of Abū Kāmil (late ninth century). It is a practical rule for converting two roots
into a single root. It is not covered in Euclid’s Elements, and it is not connected with any
theory of quadratic irrationals.

179.11 Al­Hawārī gives a second method of finding the sum. Using the same example

he calculates ҇38҇4 > 4 (division of roots is explained below, at 187.2), and he adds 1 to

get 4. This 4 is then multiplied by the ҇4 to get ҇59. The same procedure works if we
reverse the roles of 3 and 27. In modern notation, ҇ূ , ҇ৃ > ๟ำূৃ , 2๠ Բ ҇ৃ.
179.16 Another example: add ҇3 to ҇9 to get ҇29.

65 (Saidan 1986, 530.24).
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179.20 Al­Hawārī borrows his problem “add half a root of twenty to two roots of five”
from Ibn al­Bannāʾ’s algebra book, where it is solved the same way.65 In his explanation
al­Hawārī notes that “half a root of twenty is less than one root”, so he transforms it to one
root, which is ҇6. (The verb behind “transform” here, and elsewhere in our translation,
is radda, which ordinarily means “to return”, or “to send back”.) At this point, al­Hawārī
could add this to the two roots of five to get three roots of five, which would lead to҇56. But his goal is to illustrate the technique of forming single roots from fractions and
multiples of roots, so he continues: “And two roots of five are more than one root, so we
transform them to one root”, which is ҇31. Then the problem is the same as adding ҇6
to ҇31. This is worked out by the rule at 179.7 to get ҇56.
180.6 Al­Hawārī, or more likely Ibn al­Bannāʾ, speaks here about adding roots of dif­
ferent ranks, like adding a root to a root of a root (i.e., to a fourth root). The square root
must be made into a root of a root before adding. But there is no nice rule to tell if two
fourth roots can be added to get a single fourth root. Al­Hawārī seems to think that the
rule for square roots works here too, for he writes below, in the passage at 180.15, that
“their surface is likewise not a square, so we add them with the coordinating conjunction”,
where this conjunction is the word “and”.

180.10 If the roots cannot be added, then one puts the word “and” between them. The
example is to add ҇4 to ҇26. Since 4 Բ 26 > 56 is not a perfect square, we cannot write
them as a single root. Their sum is thus expressed as the binomial “a root of three and a
root of fifteen”. The “and” (wa) does not mean “plus”. See the discussion at 219.1 below.
Also, “their surface” is their product. See our comments at 66.17 above.

180.15 Here al­Hawārī asks for the sum of 23 of ำ҇91 and 2 ͽ 25 ͽ 4 of ҇795, where the
2 ͽ 25 ͽ 4 is “a third of a fourth”. First, the 23 of ำ҇91 is “a root of a root of five” (ำ҇6), and
the 2 ͽ 25 ͽ 4 of ҇795 is “a root of four and three fourths” (ำ455). To add them we make them

the same rank, so we write ำ455 as ๳ำ 2 53 9 33 by squaring the 455. As we just mentioned,
the rule al­Hawārī seems to apply to determine if the two can be added does not work. The
sum of the roots is expressed as “a root of a root of five and a root of a root of twenty­two

and four eighths and half an eighth” (ำ҇6 ๳ำ 2 53 9 33).
181.4 The first rule for subtracting roots is similar to the first rule for adding roots.
Al­Hawārī subtracts ҇9 from ҇43 by first multiplying 9 Բ 43 > 367, taking its root to
get 16, and doubling it to get 32. This is subtracted from the sum of the two numbers9 , 43 > 51, leaving 8. The difference of the roots is then ҇9. In modern notation,

҇ূ ѿ ҇ৃ > ำূ , ৃ ѿ 3҇ূৃ.
181.10 The second rule for subtracting roots is like the second rule for adding them.
Al­Hawārī’s example is to subtract ҇23 from ҇38. He divides ҇38 by ҇23 to get 232
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(division of roots is explained below, at 187.2). Subtracting 1 leaves 23 . Multiplying this

by ҇23, the divisor, gives ҇4, which is the answer. In modern notation, ҇ূ ѿ ҇ৃ >
๟ำূৃ ѿ 2๠ Բ ҇ৃ.
182.1 Ibn al­Bannāʾ again mentions that if the roots are less than one root or more than
one root, they must be returned to one root, like in the addition problem above at 179.20.
And if their ranks are different they must be made the same, as above at 180.15.

182.4 Here al­Hawārī gives examples in which the roots cannot be subtracted. For
example, subtracting ҇9 from ҇21 can only be expressed as “a root of ten less a root of
eight”. The “less” (illā) does not mean “minus”. See below at 219.4.

183.1 Section I.3.2. Multiplying roots.

183.4 Although we have not found any Arabic book that characterizes the multiplication
of irrational roots in a way like Ibn al­Bannāʾ did for the multiplication of whole numbers
(95.2) and fractions (149.2), the basic rule was well known. In the latter ninth century
Abū Kāmil stated the rule and gave two proofs of it, while other authors, like al­Baghdādī,
merely state the rule and give examples.66 Al­Hawārī’s first example is to multiply ҇9 by҇:. The answer is a root of the product of the numbers, ҇83.
183.7 Next, al­Hawārī multiplies ำ҇6 by ำ҇8. Since the roots are of the same rank
(both are roots of roots), again he multiplies the numbers and applies the roots. The answer

is ำ҇46. The next example, at 183.11, is ๳ำ҇4 Բ ๳ำ҇9 > ๳ำ҇35.
183.15 Here al­Hawārī multiplies 3 by the apotome ҇8 ϊ 3. He distributes just the way
we would, first multiplying the 3 by ҇8 to get ҇74, then the 3 by 2 to get 6. The answer
is ҇74 ϊ 7.
183.20 Ibn al­Bannāʾ gives the rule for multiplying a rational number by a root that
al­Hawārī has already applied above in the calculations at 179.20, 180.15, 181.12, and
183.15. The first example is to multiply 3 by ҇8, which he had just done as part of the
previous problem. Al­Hawārī calculates 43 > :, and : Բ 8 > 74, so the answer is ҇74. He
then continues through 185.12 with examples of multiplying numbers by multiples and
fractions of roots. After that, starting at 186.1, he will duplicate and partition roots.

184.4 Next, to find 3 Բ ำ҇4, he finds 33 > 5, 53 > 27, and 27 Բ 4 > 59, so the answer
is ำ҇59.
66 For Abū Kāmil, see (Oaks 2011b); for al­Baghdādī, see (al­Baghdādī 1985, 200.5).
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184.11 To multiply 2 by two roots of 7 is like multiplying the 2 by a pair of ҇8s. The
two ҇8s must be turned into a single root first, and together they are ҇39. Now the 2 can
be squared and multiplied by 28 to get the answer, which is ҇223.
184.18 Similarly, to multiply 5 by three roots of a root of 2 is like multiplying 5 by three

ำ҇3s. The three roots together are ำ҇273, and multiplying the 162 by a square of a
square of 5, which is 625, gives the answer ำ҇212-361.
185.6 Al­Hawārī multiplies 34 by half of ҇31. The latter is the same as ҇6, so the 34 is
squared to give 5: , and this is multiplied by the 5, resulting in ำ3:3.
185.12 To multiply ҇6 by half of ำ҇51 one first turns the half into a whole by
squaring the 23 to get 25 , and then squaring this to get 227 , and then multiplying it by the 40
to get ๳ำ233. Also, the ҇6 must be converted into a root of a root, and this is ำ҇36.
Multiplying 233 by 25 gives 2373, so the answer is ๳ำ2373.
186.1 To duplicate a root means to collect together copies of it. In the second of two
examples, to duplicate ҇8 five times means to gather five ҇8s into a single root. This is
done by multiplying 5 by ҇8. The answer is ҇286.
186.8 The same works for partitioning a root, which means to take a fraction of a root.
Half a root of ten is found by multiplying ҇21 by 23 . Likewise, a third of four eighths ofำ҇71 is found by multiplying the fraction by the root.
187.1 Section I.3.2. Dividing and denominating roots.

187.2 Dividing or denominating a root by a root follows the same general rules as
multiplying roots. Al­Hawārī begins by dividing ҇31 by ҇4. First he finds 31 × 4 > 734 ,
then he takes its root to getำ347. The next example works the same way. Al­Hawārī wrote
at 187.7 and at 187.14 “divide” where he should have written “denominate”.

187.10 To divide ำ҇7 by ำ҇3, divide the 6 by 2 to get 3, then apply the roots to get
ำ҇4. The next example, dividing ำ҇29 by ำ҇43, works the same way.
188.1 One should only perform a division with single roots, so multiples and fractions
of a root must first be converted to single roots. Also, the ranks of the roots of the dividend
and divisor must be the same. We mentioned above at 134.2 that there are no medieval
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counterparts to fractions with irrational numbers, like our 2҇3 and ҇33 , but one can perform

the divisions. To divide 1 by ҇3 the ranks should be made equal, so 1 is converted to ҇2.
Then 1 is divided by 2 to get 23 , and finally a root is applied to get ำ23 . Here, 23 is valid

as a fraction, and a root can be taken of any number. To divide ҇3 by 2 one follows the
same rule by first rewriting the 2 as ҇5, to again get ำ23 .

188.6 To divide ำ҇25 by ҇3, the ҇3 has to be written as ำ҇5. Then 25 × 5 > 423 ,
so the answer is ๳ำ234.
188.11 Dividing two ҇26s by 2 should be trivial – one simply gets a single ҇26. But
al­Hawārī illustrates the general rule by converting the two roots into a single root and
then dividing the result by 2. The two roots together are ҇71, and the 2 as a root is ҇5.
Then 71 × 5 > 26, so the answer is ҇26. The next example, dividing half of ҇35 by ҇3,
works similarly.

188.18 To divide a quantity by a binomial or an apotome one multiplies both amounts
by the conjugate to eliminate the square root. Al­Hawārī’s first example is to divide 12
by the binomial 6 ҇4. He multiplies the 12 by the apotome 6 ϊ ҇4 to get 71 ϊ ҇543.
Then he multiplies 6 ҇4 by 6 ϊ ҇4 to get 22. Dividing the 71 ϊ ҇543 by 22 results in922 3 ϊ ำ : :22 22 . We would write this as 3 922 ѿ ำ219232 , or 3 922 ѿ 722҇4, or even 41ѿ7҇422 .
Restating the latter two rhetorically would result in improperly expressed amounts. These
only became possible with Descartes.67

Dividing 10 by 4 ϊ ҇8 is done the same way. The numerator and denominator are multi­
plied by the binomial 4 ҇8, which leads to the answer 26 ҇286.
191.1 Part II. On the rules by which one arrives at knowledge of the required un­
known from the posited known.

Ibn al­Bannāʾ covers three problem­solving methods in Part II: the rule of three, double
false position, and algebra. Ibn al­Bannāʾ and other Arabic authors call the first of these
“the four proportional numbers”. It is often applied directly to solve a problem, and it is
also the core of the method we call single false position. In that method, a convenient value
is chosen for the answer (the false posited value, or position), and the true value is found
via proportion by a calculation on the posited value and its error. Ibn al­Bannāʾ does not
cover single false position in his Condensed Book.

Double false position was called the method of “the two errors” (al­khaṭaʾān). Like other
arithmeticians in the Maghreb, Ibn al­Bannāʾ calls it the method of “scales” (kiffāt) be­
cause of the shape of the diagram drawn to work out the problems. In this method, two
67See (Oaks 2017, 153).
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false values are posited for the answer, and the true value is found by a calculation in­
volving the values and their respective errors. This method relies on proportion, so it is
covered along with the rule of three in Chapter II.1.

Algebra is covered in Chapter II.2. The Arabic name for algebra is al­jabr wa­l­muqābala,
meaning “restoration and confrontation”, or sometimes al­jabr for short. This is the ori­
gin of our word “algebra”. In an algebraic solution, an unknown is named in terms of
designated names of the powers of the unknown, and an equation is set up in terms of
these names and solved. In the other methods the calculations are worked out on known
numbers, and without equations.

Ibn al­Bannāʾ and al­Hawārī explain the rules for each of the three methods, but they give
sample problems only for double false position. We give examples translated from other
books of the four proportional numbers, single false position, and algebra in Appendix B.

193.1 Chapter II.1. Working out [problems] with proportion.

The Arabic word for mathematical “ratio” is nisba. This word is also used in non­
mathematical settings to mean any kind of relation between two objects, and even kinship
between people. Nisba is also the Arabic word for “proportion”. The two meanings can
be distinguished by the context.

195.2 Ibn al­Bannāʾ lists the following kinds of proportion in Lifting the Veil:68

1. Geometric. This is the usual proportion involving four numbers ূ, ৃ, ৄ, and ৅ in
which the ratio ূ ң ৃ is equal to the ratio ৄ ң ৅, or, in notation, ূ ң ৃ ңң ৄ ң ৅.
Numerically, it is equivalent to ূৃ > ৅ৄ .

2. Arithmetic. “The difference between the first and the second is equal to the differ­
ence between the third and the fourth”.69 The four numbers ূ, ৃ, ৄ, and ৅ are in
arithmetic proportion if ৃ ѿ ূ > ৅ ѿ ৄ.

3. Harmonic. Ibn al­Bannāʾ writes “For three numbers, the ratio of the extremes is as
the ratio of the two differences between the middle and each one of the extremes.
This ratio is composed of the geometric and the arithmetic, since, on the one hand,
it comes from the difference between the middle and each one of the extremes,
resembling the arithmetic, and, on the other, from proportionality, resembling the
geometric”.70 Three (descending) numbers ূ, ৃ, and ৄ are in harmonic proportion
if ূ ң ৄ ңң ূ ѿ ৃ ң ৃ ѿ ৄ. Ibn al­Bannāʾ gives his source for the definition as
Nicomachus’s Arithmetical Introduction.71

4. Ex­aequali. Given two sets of numbers ূ2- ূ3- Ϳ ূৎ and ৃ2- ৃ3- Ϳ ৃৎ, if ূ৉ ң ূ৉,2 ңңৃ৉ ң ৃ৉,2 for each ৉, then ূ2 ң ূৎ ңң ৃ2 ң ৃৎ. Although this reads like a proposition,
68 (Ibn al­Bannāʾ 1994, 293.3­16).
69 (Ibn al­Bannāʾ 1994, 293.5).
70 (Ibn al­Bannāʾ 1994, 293.7).
71 “And the third is harmonic proportion, which is described by the author of the Arithmetic…” (Ibn al­
Bannāʾ 1984, 293.7). He then paraphrases (Nicomachus 1959, 102.1). Harmonic proportion is covered by
Nicomachus in Book II Chapter 25, starting at (Nicomachus 1959, 101.20); (Nicomachus 1938, 274).
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it is presented as Definition V.17 in Euclid’s Elements. Nicomachus does not cover
it.

5. Harmony. This one comes from Nicomachus, who describes it as “the most perfect
proportion, that which is three­dimensional and embraces them all”.72 Both Nico­
machus and Ibn al­Bannāʾ remark that this proportion is important in music and
astronomy. Briefly, four numbers are “in harmony” if they are of the form ূ, 3ূৃূ,ৃ ,ূ,ৃ3 , and ৃ. See Nicomachus’s Introduction, Chapter II.29 for the different properties
it satisfies.

As Nicomachus notes, geometric proportion “is the only one in the strict sense of the word
to be called a proportion, because its terms are seen to be in the same ratio”.73

In his list at 195.2 al­Hawārī omits geometric proportion, and he switches the order of
the last two. Apparently he omitted geometric proportion by mistake. Not only does he
dispense with all four proportions from his list in this passage, and then follow Ibn al­
Bannāʾ by discussing geometric proportion, but the omission causes a misreading. Ibn
al­Bannāʾ writes “[the] origin of these last three proportions is the first, which is in the
four numbers mentioned in the book”.74 By leaving off geometric proportion al­Hawārī’s
paraphrase “all three derive from it and it does not derive from them” implies that the last
three derive from arithmetic proportion instead of geometric proportion.

195.7 The four proportional numbers.

Ibn al­Bannāʾ focuses on geometric proportion for the rest of this chapter. Four numbers,ূ, ৃ, ৄ, and ৅, are proportional if ূ ң ৃ ңң ৄ ң ৅, or, equivalently, if ূ৅ > ৃৄ.
195.9 Whenever three of the numbers are known, the fourth can be found. Continuing
with modern notation, suppose we want to find ৘ in the proportion ৘ ң ূ ңң ৃ ң ৄ orূ ң ৘ ңң ৄ ң ৃ.
195.14 In ৘ ң ূ ңң ৃ ң ৄ, the ৘ and ৃ are of the same kind because they have the same
positions in their respective ratios. Likewise, ূ and ৄ are of the same kind. The number ৃ
is isolated because it is not of the same kind as either of the other two known numbers.
This is multiplied by ূ, the number in ratio with ৘. The product is then divided by the third
number ৄ to give the value of ৘.
195.16 Al­Hawārī gives examples of this rule for the proportion 4 ң 7 ңң 5 ң 9, treating
each number in turn as the unknown and finding it from the other three by the rule.

196.16 A proportion can be converted to a number of other proportions. The four types
mentioned by Ibn al­Bannāʾ are taken in order from Definitions V.12 through V.15 in
Euclid’s Elements. If ূ ң ৃ ңң ৄ ң ৅, then the following proportions also hold:
72 Translated in (Nicomachus 1938, 284). Both in Greek and in Arabic the words for “harmonic” and “har­
mony” have the same root.
73 Translated in (Nicomachus 1938, 270).
74 (Ibn al­Bannāʾ 1994, 293.17). One could argue that he meant “the first two”, since he explicitly said
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• Switching (badala): ূ ң ৄ ңң ৃ ң ৅.
In Elements Def. V.12 Heath translates this as “alternate ratio”.

• Reversing (khalafa): ৃ ң ূ ңң ৅ ң ৄ.
In Elements Def. V.13 Heath translates this as “inverse ratio”.

• Combining (rakiba):)ূ , ৃ* ң ূ ңң )ৄ , ৅* ң ৄ or )ূ , ৃ* ң ৃ ңң )ৄ , ৅* ң ৅.
In Elements Def. V.14 Heath translates this as “composition of a ratio”.

• Separating (faṣala):}ূ ѿ ৃ} ң ূ ңң }ৄ ѿ ৅} ң ৄ or }ূ ѿ ৃ} ң ৃ ңң }ৄ ѿ ৅} ң ৅.
In Elements Def. V.15 Heath translates this as “separation of a ratio”.

One can also combine two or more of these operations. For example, combining after
switching gives )ূ , ৄ* ң ূ ңң )ৃ , ৅* ң ৃ. Euclid gives one more in Definition V.16:
the “conversion” of the proportion gives ূ ң )ূ ѿ ৃ* ңң ৄ ң )ৄ ѿ ৅*, presuming ূ ? ৃ
and ৄ ? ৅. But this can be obtained by reversing after separating, which may be why Ibn
al­Bannāʾ did not include it.

Al­Hawārī may have chosen to copy this passage from Lifting the Veil because, as he
mentions below at 198.4, one can derive the rule for double false position from a known
proportion by switching, separating, and then switching again.

197.4 Al­Hawārī gives variations on Ibn al­Bannāʾ’s rule at 195.9 that switch the order
of operations. The jurist mentioned at the end of this passage is otherwise unknown.

198.2 The method of scales (double false position)

The method of “scales”, or double false position, “comes from the art of geometry” be­
cause of its use in geometric proportion. The method is in fact purely numerical. In another
part of Lifting the Veil, Ibn al­Bannāʾ explains the term “geometric proportion”: “It is said
to be geometric proportion because it is more specific to the quantities that are considered
in geometry”.75

Double false position works for problems in which the operations on the unknown de­
scribed in the enunciation give a number proportional to the unknown. Sometimes a prob­
lem can be adjusted to satisfy this condition (our authors do not do this), and other times,
as we shall see starting at 201.14, the method itself can be adjusted.

198.4 Al­Hawārī mentions that the proportion just stated by Ibn al­Bannāʾ is found by
switching, separating, and then switching a known proportion. We explain this in terms
of the specific numbers in the problem below at 199.1, so read that first and then come
back here. The “first scale”, or the first posited value, is 15. The calculated “portion” is
the result of performing the operations on the 15, and this is 725 . The “assigned number”
is the 10, and the value of the unknown is found at the end to be 24.

that the third, harmonic proportion, “is composed of the geometric and the arithmetic”. In any case, it is
geometric proportion that is in “the four [proportional] numbers”.
75 (Ibn al­Bannāʾ 1994, 214.12).
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We begin with the ratio stated by Ibn al­Bannāʾ, “the ratio of the error of each scale to
the difference between the scale and the unknown number is as the ratio of the assigned
number to the unknown”:

21 ѿ 725 ң 35 ѿ 26 ңң 21 ң 35/
Switching gives 21 ѿ 725 ң 21 ңң 35 ѿ 26 ң 35/
Separating gives 725 ң 21 ңң 26 ң 35/
Switching again gives 725 ң 26 ңң 21 ң 35/
This is now “the ratio of the portion to its scale is as the ratio of the assigned number to
the unknown”, which al­Hawārī took from Lifting the Veil.

From here, Ibn al­Bannāʾ continues in Lifting the Veil to derive the rule for solving prob­
lems by double false position, though al­Hawārī does not copy it into his book. Like all
his derivations/proofs, Ibn al­Bannāʾ expresses the steps in arithmetical terms, without the
use of algebra. In other words, he does not name any of the quantities and then manipu­
late the subsequent algebraic expressions. For example, he says “so the two results from
multiplying each error by the excess of the other scale are equal”,76 where by contrast we
would name the unknown as, say, ৘, the two posited values or scales as ৘2, ৘3, and their
respective errors as ৆2- ৆3, and then write ৆2 Բ )৘3 ѿ ৘* > ৆3 Բ )৘2 ѿ ৘*. The names of the
powers of the unknown in premodern algebra were generally not used outside the context
of algebraic problem­solving, and Ibn al­Bannāʾ’s derivation is not an exception.We leave
it to the reader to take our last equation and solve for ৘ to find a modern rendering of the
procedure.

198.7 Double false position is worked out with a diagram, shown below. It has the shape
of a balance, or “scales”.

199.1 Al­Hawārī’s first problem is: “A quantity: taking away its third and its fourth
leaves ten. How much is the quantity?” See our commentary below at 211.8 for the dif­
ferent meanings of the word māl, translated here as “quantity”, in Arabic arithmetic.

The first step is to draw the scales and put the assigned number above the dome:

76 (Ibn al­Bannāʾ 1994, 297.18).
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✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

10

This method calls for two values to be posited. Al­Hawārī makes the first value 15. This
is placed in the right scale like this:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

10

15

The operations are then performed on the posited value: subtracting 5 (a third of 15) and445 (a fourth of 15) from the 15 leaves 725 . This is placed next to the 15, inside the balance:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

10

15257

We confront this 725 with the desired 10, and we find that it falls short by an error of 445 .
Because it falls short, it is written below the scale:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

10

15257
454
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Al­Hawārī then chooses 12 for the second value. He follows the same process, this time
putting the numbers in the left scale. The 12 is written in, then the calculations are made:
subtracting 4 (a third of 12) and 3 (a fourth of 12) from the 12 leaves 5. Confronting this 5
with the desired 10, we find that it falls short by 5. The second error, 5, is likewise written
below the scale:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

10

15257
454

12 5

5

Now we are ready to calculate the value of the unknown. First, each posited value is
multiplied by the other error, and their difference is taken. Multiplying the 15 by 5 gives
75, and 445 by 12 gives 45. Their difference is 30. This is divided by the difference between
the two errors, which is 6 ѿ 445 > 225 . The result is 24, which is the answer.
200.1 The next example is: “A quantity: we take the sum of its third and its fifth, and
we add to it half of the remainder, so it comes to twenty­three”. To explain what is meant
by “the remainder”, we resort to modern algebraic notation. If we name the quantity ৘,
then its third and its fifth are 24৘ , 26৘. The remainder is what we get after subtracting this
from the quantity, so let ৒ > ৘ ѿ )24৘ , 26৘*. We could then express the enunciation as the
equation 24৘ , 26৘ , 23৒ > 34, but of course this is not how our author proceeds with his
solution.

Al­Hawārī chooses 40 for the first value. Adding its third and its fifth gives 2424 ,9 > 3224 .
The remainder from 40 is then 2934 . Adding to the 3224 half the remainder, or :24 , gives4134 . This 4134 is not the 23 we want. Since the calculated number this time exceeds the
desired amount, we put the error 834 above the scale.
Next, al­Hawārī tries 45. Taking its third and its fifth and adding half the remainder gives4523 , so the error is 2223 . Since the 4523 is greater than the desired 23, the error is again put
above the scale:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

23

403441

348
45 2345

2322
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The same procedure is followed as in the last example. He calculates 834 Բ 56 > 456 and51 Բ 2223 > 571. Subtracting the smaller from the greater leaves 115. This is divided by the
difference between the errors, which is 2223 ѿ 834 > 467 , to get 30, which is the unknown
quantity.

201.1 In the third example, al­Hawārī illustrates the case in which one value gives a
result that falls short of the desired number and the other gives a result that exceeds it.
The problem is to find a quantity such that if “we add its tenth to the difference between
its fourth and three of its fifthsͿit comes to nine”. We resort again to modern algebra to
clarify what is being asked. If we call the quantity ৘ and perform the operations, we get the
equation )46৘ ѿ 25৘* , 221৘ > :. Again, there is no algebra in the enunciation, and algebra
plays no role in the solution.

The first posited value is 12, and the result of the operations is 636 . This falls short of the
desired 9 by 446 . The second posited value is 25. The result of the operations is 2225 , which
exceeds the desired 9 by 325 . The two errors are placed below and above the scale like this:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

9

12366
464

25 2522

253

Again we perform the two multiplications, but this time we add the results rather than
subtract them, since one error is above the scale and the other is below. So 446 Բ 36 > :1
and 23 Բ 325 > 38. Their sum is 117, and this is divided by the sum of the errors, which is325 , 446 > 2 55 6 6, which for us would be 62831 . The result of the division is 20, which is the
unknown quantity.

Al­Hawārī has now covered three cases: (a) both calculated portions fall short of the de­
sired number, (b) both exceed it, and (c) one falls short and the other exceeds. We can, if
we want, write a single formula to cover all three cases because our arithmetic allows for
negative numbers.

201.14 Ibn al­Bannāʾ gives a second method of working with scales. The diagram and
values are drawn as described above, but the calculations are now asymmetric with respect
to the scales, so that it works even when the same value is posited for both scales (as in
the example at 203.1). With only one error, it functions more like a complicated version
of single false position. The asymmetry also opens it up to problems in which only one
posited value and its error are given, but not the number above the dome! The example
for this is given at 203.11.
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“This second method is used only when there is a proportional relation”, as al­Hawārī
writes at 202.3. He means that in cases where two or more values are placed in each
scale, they must be chosen proportionally according to the conditions of the problem.
This method, in fact, will also work where there is only one value placed in each scale,
like the three examples given above.

202.3 The first example is “ten: you divide it into two parts so that a third of one of
them is a fourth of the other”. The enunciation of this problem copies word­for­word the
first problem in Ibn al­Bannāʾ’s algebra book.77 There, of course, it is solved by algebra,
with the naming of one of the parts as “a thing”, which plays the role of our ৘. It is easier
for us to understand what is being asked in the enunciation by converting it to modern
algebra: If we name the parts ূ and ৃ, then ূ , ৃ > 21 and 24ূ > 25ৃ. This second condition
is equivalent to saying that the ratio of one part to the other is as the ratio of 3 to 4.

No naming occurs in double false position. The first step in al­Hawārī’s solution is to put
the 10 above the dome, and then to pick two numbers so that a third of one is a fourth of
the other. He picks 3 and 4. They are placed in the right scale, with the 3 above the 4. Their
sum is 7, and this is placed next to them. Confronting 7 with 10, we see that it falls short
by 3, so a 3 is put below the scale. Next, 6 and 8 are posited for the second two numbers.
Their sum is 14, which exceeds the 10 by 4. The completed diagram looks like this:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

104

3

4

3

6

8
14 7

The rule for finding the answer will seem kind of bizarre. Al­Hawārī multiplies the 6 on
the left by the error 3 on the right to get 18. Then he multiplies the 14 on the left by the 3
on the right, above the 4, to get 42. Because the first error is below the scale (whether the
second error is above or below does not matter), he adds them to get 60. Dividing this by
the 14 gives 538 , which is the smaller number, and the greater is 21 ѿ 538 > 668 . We leave
it as an exercise for the reader to show with modern algebra, or by geometry if you want,
that this method works.

203.1 Because of the asymmetry of the calculations, one can work with the same value
twice rather than pick a different one. In this next example, al­Hawārī solves “ten: you
divide it into two parts. You divide the greater by the smaller, so the result is four”. This

77 (Saidan 1986, 557.7). Ibn al­Bannāʾ’s first of two solutions by algebra is: “You make one of the parts a
thing, so the other is ten less a thing. We take a third of a thing, giving a third of a thing, and you confront it
with a fourth of ten less a thing, and that is two and a half less a fourth of a thing [this sets up the equation
we write as 24 ৘ > 3 23 ѿ 25 ৘]. You restore and confront [i.e., simplify the equation], resulting in the third type
[of equation, which we would write as 823 ৘ > 3 23 ], which gives the thing is four and two sevenths, which
is the part whose third we took, and the other part is the remainder from the ten.” In the second solution he
switches the roles of “a thing” and “ten less a thing”.
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time the ratio of the parts is 4 instead of 45 . He picks as his first values the numbers 3 and
12. Their sum is 15, which exceeds the 10 by 5. So a 5 is put above the scale. With the
same numbers on both sides, the diagram looks like this:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

10 5

3

12

3

12
15 15

Now the 3 on the left is multiplied by the error 5 on the right to get 15, and the 15 on the
left multiplied by the 3 on the right make 45. We take their difference because the error is
above the scale. So 56 ѿ 26 > 41. We divide this by the 15 to get 2, which is the smaller
part, and the greater part is 8.

203.11 Ibn al­Bannāʾ writes that this second method will also work when only one of
the posited values and its error are given in the problem. He gives the example “a quantity:
we subtract its third and its fourth from a third of sixty and its fourth, leaving fourteen”.
If we call the unknown ৘, this would yield the equation )2471 , 2571* ѿ )24৘ , 25৘* > 25.
This derives from the problem “A quantity: you added its third and its fourth, so it gave=some number?”. We can think of 14 as the error for the posited value 60. Pick another
number for the second value, like 72, add its third and its fourth to get 42, and fill out the
diagram:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

14

6072 42

Since the error 14 exceeds, we calculate 71 Բ 53 ѿ 83 Բ 25 > 2623, and
we divide this by the 42 to get 36, which is the answer. The number above the dome would
have been 21, but we were not asked to find that.

204.3 Ibn al­Bannāʾ dictated three alternatives to the basic rule of double false position
illustrated in the examples above at 199.1, 200.1, and 201.1. These explanations would
have been better placed just after those examples. Al­Hawārī does not give examples of
these alternatives, so we give here the calculations from his previous examples. The dia­
grams are the same.

204.6 For the example at 199.1, the difference between (the numbers in) the scales
is 26 ѿ 23 > 4. Multiplying this by one of the errors, 5, gives 15. Dividing this by the
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difference between the errors, or 225 , gives 12. Adding to this the 12 in the scale associated
with the error 5 gives 24, which is the answer.

For the example at 200.1, we calculate 56 ѿ 51 > 6, then 6 Բ 2223 > 6823 . This is divided
by 2223 ѿ 834 > 467 to get 15. Subtracting this from the 45 gives 30, which is the answer.

For the example at 201.1, we calculate 36 ѿ 23 > 24, then 24 Բ 325 > 3:25 . Dividing this
by 325 , 446 > 62831 gives 6. Subtracting this from the 25 gives 20, which is the answer.

204.12 The calculations for these same three examples by the second alternative are as
follows:

For 199.1: 26 ѿ 23 > 4; 6 , 445 > 945 . Multiplying them, 4 Բ 945 > 3725 ; 3725 × )6 ѿ 445* >3725 × 225 > 32. Keep this in mind. One option is: 32 , 4 > 35; its half is 12, and adding
the 12 in the scale gives the answer 24. The other option is: 32 ѿ 4 > 29; its half is 9, and: , 26 > 35.
For 200.1: 56 ѿ 51 > 6; 2223 , 834 > 2:27 . Multiplying them, 6 Բ 2:27 > :667 ; :667 ×)2223 ѿ 834* > :667 × 467 > 36. Keep this in mind. One option is: 36 , 6 > 41, its half is
15, and 56 ѿ 26 > 41 is the answer. The other option is: 36 ѿ 6 > 31, its half is 10, and51 ѿ 21 > 41.
For 201.1: 36 ѿ 23 > 24; 446 ѿ 325 > 2 831 . Multiplying them, 24 Բ 2 831 > 282231 , 282231 ×)446 , 325* > 282231 × 62831 > 4. Keep this in mind. One option is: 4 , 24 > 27, its half is 8,
and 9 , 23 > 31, which is the answer. The other option is: 24 ѿ 4 > 21, its half is 5, and36 ѿ 6 > 31.
205.1 The calculations for these examples by the third alternative are as follows:

For 199.1: 26 ѿ 23 > 4; 4 Բ 21 > 41; 41 × )6 ѿ 445* > 35, which is the answer.
For 200.1: 56 ѿ 51 > 6; 6 Բ 34 > 226; 226 × )2223 ѿ 834* > 41, which is the answer.
For 201.1: 36 ѿ 23 > 24; 24 Բ : > 228; 228 × )446 , 325* > 31, which is the answer.
205.5 If an indeterminate problem does not restrict any number to a particular class such
as squares or cubes, then to be non­trivial it must give conditions on at least three unknown
numbers. In a solution by scales one of these numbers can reside above the dome, so there
will be at least two values in each scale. Unlike problems with a proportional relation, two
of these values can be chosen independent of each other. Thus the first method must be
used.

This first indeterminate problem is of a common type in Arabic and later Latin and Hebrew
arithmetic, and it is found in abstract form in Diophantus.78 In this type two or more men

78 See (Katz 2017).



Commentary 205

want to buy a horse, with conditions on how much money each one has. Problems of this
type are usually solved by algebra, like problem [5] in Appendix B.

Because the problem is indeterminate, any number can be chosen for the first man, i.e.,
the amount of money the first man has. Ibn al­Bannāʾ chooses 4 dirhams. He then first
posits 2 dirhams for the second man. From these two numbers the price of the horse and
the money of the third are found, 5 and 9 respectively. The 4, 2, and 9 are placed in the
first scale, and the 5 is put above the dome. In the second scale the first man is given 4
again, and the value for the second man is posited as 6 dirhams. Then the price of the horse
is calculated from the last condition as 7, so the third man must have 3 dirhams. The 4, 6,
and 3 are placed in the second scale, and the 7 is placed above the dome.

The price of the horse is then calculated a second time from the last condition. For the
right scale, the horse costs : , 25 Բ 5 > 21, which exceeds the calculated 5 by 5, so a 5 is
put above the scale. In the left scale, the same condition gives the price of the horse as 4
dirhams, which is 3 less than the calculated 7, so the error of 3 is placed below the scale.
Here is the diagram:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

7
5 5

first4
second6
third3

first4
second2
third9

3

Now the money of each man can be calculated using the rule from the first method. The
first man has 4 dirhams, as we decided in advance. The second man’s money is found by
the calculation 6 Բ 7 , 4 Բ 3 > 47, divided by 6 , 4 > 9, giving 523 dirhams. The third man’s
money is found the same way: 6 Բ 4 , 4 Բ : > 53, and dividing by the same 8 gives 624
dirhams. By the first condition, the price of the horse is 5 , 23)523* > 725 dirhams.
Ibn al­Bannāʾ does not prove in Lifting the Veil that this variation with two numbers above
the dome works. He could have derived it through a manipulation of proportions as he
did for the standard version of the method, or he could have followed Qusṭā ibn Lūqā in
proving it by geometry. We give an explanation in terms of modern elementary algebra.
Regardless of how many men want to buy the horse, once the money of the first is chosen
and the money of the second is posited, all other values are calculated. If we call the money
of the second ৙, then the problem is equivalent to finding ৙ where the price of the horse
can be written two ways, each of them of the form ূ৙ , ৃ. In our problem, these are 23৙ , 5
and 43৙ ѿ 23 . When Ibn al­Bannāʾ calculates the values for the horse to put above the dome
he gets the same values we get by plugging his numbers into 23৙ , 5. When he recalculates
the values, he gets the same results we get by plugging them into 43৙ ѿ 23 .
In the kinds of problems that are usually solved by double false position, the (posited)
unknown is proportional to the desired value (the number placed above the dome), or, in
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modern algebra, ౖ৙ > ౗ for constants ౖ and ౗. In the present problem, the condition is not
stated as one of proportionality. It effectively equates the results of two calculations, which
we can write as ূ৙,ৃ > ূ༚৙,ৃ༚. But this equation can be rearranged as )ূѿূ༚*৙ > ৃ༚ ѿৃ,
and applying double false position to this proportional relation, with the single numberৃ༚ ѿ ৃ above the dome, gives the same errors for posited values of ৙, and thus the same
answer, as Ibn al­Bannāʾ’s way.

206.5 Since all solutions are proportional to this one, al­Hawārī notes that if we do
not want fractions, we can multiply all the numbers by 4. This way, the first man has
16 dirhams, the second has 18 dirhams, the third has 21 dirhams, and the horse costs 25
dirhams.

207.1 We can also assign an arbitrary value for the price of the horse, and pick a value
for what the first man has, and work through the calculations. Then we pick a different
value for the horse, but the same value for the first man, and work through the calculations
again. The same rule then gives what the second and third man have.

207.6 This next problem asks for the number of each kind of bird given the total cost
and the price of each kind. Problems of this type were posed and solved in China and India
before the rise of Islam, and they later appear in medieval Europe, including Fibonacci’s
Liber Abaci.79 In our problem, 40 birds are purchased for 40 dirhams. There are three kinds
of bird: starlings, which cost 1/8 of a dirham each; chickens, which cost 2 dirhams each;
and geese, which cost 3 dirhams each. How many of each kind of bird was purchased?

207.9 Ibn al­Bannāʾ states two conditions for this problem. The first is that the number
of each kind of bird must be a whole number. Then, since the total price is whole, and
starlings are the only bird that cost a fraction of a dirham, their number must be a multiple
of 8. The second condition is that the product of the price of the cheapest bird by the
number of birds should be less than the total cost, and the product of the price of the most
expensive bird by the number of birds should be greater than the total cost.

Working with these conditions, Ibn al­Bannāʾ finds that the number of starlings cannot be
8 or 16, but that 24 is a possibility. Then, two values are posited for the number of chickens,
8 and 14. The number of geese must be the difference from 40, or 8 and 2, respectively.
The total cost is calculated, 37 and 43 dirhams, respectively, making the errors 3 and 3.
The diagram is set up like this:

✡
✡

✡
✡

✡
✡ ❏

❏
❏

❏
❏

❏

340
starlings243
geese26
chickens1428

starlings243
geese824
chickens816

3
43
37

79 (Caianiello 2018).
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Next to the number of birds, al­Hawārī has put their cost. Only the Oxford manuscript
shows the 43 and 37, and they were put below the scales because there was no room
inside.

The number of geese is calculated as 3Բ4,9Բ44,4 > 6, and the number of chickens is 25Բ4,9Բ44,4 >22. One can use modern algebra to show why this works, too. It is simpler than the case
of problems with two numbers above the dome.

For an explanation as to why our authors write “the starlings”, “the chickens”, and “the
geese” for what we would write as “the number of starlings”, “the number of chickens”,
and “the number of geese”, see the last three paragraphs of our commentary at 95.3 above.

208.12 Last, the possibility that the number of starlings is 32 is considered. This is
shown to be impossible.

By “problems involving multiplication” Ibn al­Bannāʾ probably means problems in which
unknowns are multiplied by unknowns. In such problems, the calculated portions will not
have a proportional relation to the posited values, so the method of scales will not work.
Problems [3] and [4] in Appendix B, solved by algebra, are of this type. Problems involv­
ing divisions of unknowns cannot be solved by scales, either. Problem [6] in Appendix B
is of this type, and it too is solved by algebra.

209.1 Chapter II.2. Algebra.

Arabic algebra is the third and last method of numerical problem solving presented by Ibn
al­Bannāʾ. Aswith single false position, al­Hawārī does not give any example of a problem
worked out by the method. Instead, he only covers the kinds of calculations that crop up
in the course of working through algebraic solutions. These include the solutions to the
six simplified equations, operations on polynomials, and the simplification of equations.
To make up for the lack of problems, we present some translations from other books in
Appendix B.

211.1 Section II.2.1. The meaning of algebra (al­jabr wa­l­muqābala).

The name given to algebra in medieval Arabic is al­jabr wa­l­muqābala, literally “restora­
tion and confrontation”. Sometimes the namewas shortened to just al­jabr, and via translit­
erations in medieval Latin and Italian it led to the English word “algebra”. The words al­
jabr and al­muqābala occur individually in the solutions to problems by algebra, specif­
ically for particular steps in the simplification of equations, and it is these meanings that
are briefly described in the next line, along with the term “equalization” (muʿādala). By
“its types” Ibn al­Bannāʾ means the six types of simplified equation, described at 213.1.

211.2 Ibn al­Bannāʾ gives brief explanations of restoration (al­jabr), confrontation (al­
muqābala), and equalization (muʿādala). Al­Hawārī will clarify these terms later, via ex­
amples in the section on addition and subtraction beginning at 219.1. It would not do much
good for him to expound on them here anyway, before the basic elements of algebra are
covered.
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The rules for algebra, as explained by Ibn al­Bannāʾ and illustrated by al­Hawārī, are best
understood in the context of the general structure of algebraic solutions. Three basic stages
are followed in the solution of a problem by algebra in medieval Arabic:

Stage 1. An unknown number is named in terms of the names of the powers of the un­
known, usually as a “thing” (like our “৘”). Then the conditions of the problem are
applied to the name to produce an equation;

Stage 2. The equation is simplified to one of six types (given below) via restoration and/
or confrontation;

Stage 3. The simplified equation is solved using the specified rule for that type.

211.8 The name given to the first degree unknown is a “thing” (shayʾ), though it is
sometimes called a “root” (jidhr, or, as Ibn al­Bannāʾ preferred, jadhr (see 163.11)). This
is like our ৘, though whether rhetorically or in notation, it was interpreted differently
from its modern counterpart. The second degree unknown, which corresponds to our ৘3,
is called a māl. This word ordinarily takes the meaning of “sum of money”, “possession”,
or “wealth”. Because there is no good English translation of the word, and because it was
used in a technical sense in Arabic algebra unconnected with its everyday meanings, we
leave it untranslated. And, because of the different plural forms for Arabic nouns, we write
the plural of māl with the English suffix: māls.

Units, things, and māls were considered to be three different types or species of num­
ber, just like units, tens, hundreds, etc. are different species (see our description above
at 68.18). This idea goes back at least to al­Khwārazmī in the early ninth century. He
introduced the powers of the unknown by writing: “I found that the numbers which are
needed in algebraic calculation are of three types, which are roots and māls and simple
number…”80

The word māl also commonly takes another meaning in arithmetic, where it can be an
amount of money, or, in most cases, a generic “quantity”. The word māl is used to mean
a “quantity” in two problems translated in Appendix B: Ibn al­Bannāʾ solves problem
[2] by single false position, and al­Ḥaṣṣār solves problem [7] by three different methods.
The word also means “quantity” in four of the problems al­Hawārī solves by double false
position, above at 199.1, 200.1, 201.1, and 203.11. For instance, leavingmāl untranslated,
the problem athyperlinkc199.1199.1 is “a māl: taking away its third and its fourth leaves
ten. How much is the māl?” Such problems were also frequently solved by algebra. In the
enunciationmāl is a common noun meaning “quantity” or “amount”, while in an algebraic
solution it means instead the proper name given to the second power of the unknown
“thing”. Which meaning is intended is clear from the context.

The word “root” likewise takes different meanings in arithmetic and algebra. In arithmetic
it means “square root”, while in algebra it is also the name sometimes given to the first
degree unknown. Again, the meaning is made clear by the context.81

80 (al­Khwārizmī 2009, 97.9).
81 (Oaks and Alkhateeb 2005).
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Units in Arabic arithmetic are often counted in dirhams, a denomination of silver coin.
Sometimes the word refers to money, but often the problem is stated in more abstract
terms, and it is clear, then, that “dirham” is a substitute for a generic, arithmetical “unit”.
This is most evident in problems that are stated in terms that cannot possibly involve
money, such as problems in al­Khwārazmī in which the dirham stands for one man, or in
geometry problems in Abū Kāmil in which the dirham stands for a unit length.82 In the
passage at 158.1, “dirham” appears to refer to the arithmetical unit. In all other instances
before the chapter on algebra it refers to the coin, and in the chapter on algebra it is the
unit.

We shall encounter higher powers below, especially in Section 4 starting at 225.1. The
cube of a thing is called a “cube” (kaʿb), the fourth power is a māl māl, the fifth power is
usually a māl cube, and higher powers are some combination of “māl” and “cube”. These
species can be written any way one likes, as long as the powers add up. For example, at
226.3 al­Hawārī writes that the eighth degree term can be called amāl māl māl māl, a cube
māl cube, or a cube cube māl.

211.13 The most common ways of equating numbers and magnitudes in Arabic mathe­
matics were with words deriving from sawiya (“to be equivalent, be equal”),mithl (“equiv­
alent”), the prefix ka­ (“as, like”), and the implied verb “to be”.83 Algebraic equations,
however, were stated in Arabic with the unusual verb ʿadala, meaning “equal” or “well­
balanced”. Another feature that distinguishes equations from other kinds of equating is
that the two sides of an equation are stated with the names of the algebraic powers. These
two features are evident, for example, in the equation “a māl and five things equal (taʿdil,
conjugated from ʿadala) ten dirhams and twomāls less a thing” at 224.1, which in modern
notation would be ৘3 , 6৘ > 21 , 3৘3 ѿ ৘.
We explain below in our comments in the section on addition and subtraction, beginning
at 219.1, that modern notation is not compatible with medieval algebraic expressions. For
this reason, it is better to write the expressions and equations of Arabic algebra with a
transliteration of the notation that was current in the western part of the Islamic world in
the time of al­Hawārī, even if he does not show it in his book. This notation is an extension
of Indian notation to cover algebraic expressions, operations, and equations.

This last equation is a good example for introducing the Arabic notation. Instead of ৘3 ,6৘ > 21 , 3৘3 ѿ ৘, we write it as 2্ ৔6 > 10 3্ ϊ ৔2 . In the first term, the 2্ , the “m” stands
for māls and the 1 indicates that there is one of them. The “t” in ৔6 stands for “things”, and
the 5 below is how many there are. (Even when the first degree term is called “roots”, the
letter in the notation is an abbreviation for “things”.) Simple numbers, here 10, do not need
a designation, so there is no letter above them. There is no sign for addition on the left side
or between the first two terms on the right because the terms are gathered together. This
is the same kind of grouping we saw for distinct fractions at 136.8, where “five sixths
and four fifths” is shown as 56 67 , and for binomials in our commentary at 173.10, with
examples from Ibn Qunfudh like “҇71 9”. Last, the ϊ is the same sign for “less” that we

82 Problems (24) and (28) in (al­Khwārizmī 2009, 185, 191); most of the 20 geometry problems in (Abū
Kāmil 2012, 523­577).
83 Definitions are taken from (Wehr 1994, 519, 943, 1047). See (Oaks 2010).
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saw for excluded fractions and apotomes, and which we explain and show above at 86.1,
140.1, and 173.10. It indicates that the ৔2 is lacking or missing from the 10 3্ .
The Arabic algebraic notation originated in the western part of the Islamic world (i.e., west
of Egypt) no later than the end of the twelfth century.84 Several textbooks with chapters
on algebra show it, including those written by Ibn al­Yāsamīn (d. 1204), al­Mawāḥidī
(14th c.), Ibn Qunfudh (1370), al­Qalaṣādī (d. 1486), and Ibn Ghāzī (1483), but it is not
uncommon to find purely rhetorical presentations of algebra like al­Hawārī’s, either. Like
the Indian notation for numbers that al­Hawārī and others show, the algebraic notation only
appears occasionally in books as figures to showwhat should be written on the dust­board.
The notation was not part of the running text.

Here are a couple of sample equations from a manuscript of a book that shows the nota­
tion, Ibn Ghāzī’s Aim of the Students. At one point he writes “five māls and four things
and three in number equal two māls and three things and six in number, and its figure is

”.85 Reading the notation right to left, the first term shows a mīm, the
first letter in the word māl, above a 5, for the “five māls”. The next term shows a shīn,
the first letter in shayʾ (“thing”) above a 4, and this is followed by a lone 3. The sign for
“equals” is the black line shaped like a backwards “L”. It is a lām, the last letter in taʿdil
(“equals”). The left side of the equation is written similarly. Our transliteration, read left
to right, is 6্ ৔5 3 > 3্ ৔4 6, which corresponds to the modern 6৘3 , 5৘ , 4 > 3৘3 , 4৘ , 7.
An example from the same manuscript with “less” is: “ten less four things equals sixteen

less six things, so the figure for this is ”.86 We write it as 10 ϊ ৔5 >
16 ϊ ৔7 , and in modern notation it is 21 ѿ 5৘ > 27 ѿ 7৘. Like we have seen for arithmetic,
in the manuscripts either the whole word illā is written, or the initial alif is dropped so
it looks like an upside­down ϊ . Note that here the Arabic “0” is written as a dot, so the
“10” looks like “1Բ”. Because it takes a little while to become accustomed to the Arabic
notation, we will continue for a while to give the version in modern notation as well. See
below at 229.8 for a brief description of how this notation was interpreted.

Today, we have just one form of simplified quadratic equation, ূ৘3 ,ৃ৘,ৄ > 1, where ourূ, ৃ, and ৄ can be positive, negative, or zero. The solution to this equation, ৘ > ѿৃ�҇ৃ3ѿ5ূৄ3ূ ,
is a formula expressed in terms of the coefficients. The corresponding solutions in me­
dieval algebra also use the “coefficients”, but because only positive numbers were ac­
knowledged they had six types of simplified equation: three of them “simple” (mufrad),
with a single term on each side, and the other three “composite” (murakkaba), where one
side has two terms. These are listed below, with al­Hawārī’s examples under each generic
form:

Simple equations
Type 1: some māls equal some roots

“three māls equal seven things” ( 4্ > ৔8 ; 4৘3 > 8৘).
84 See (Abdeljaouad 2002) and (Oaks 2012a) for a description of the notation.
85 (Ibn Ghāzī manuscript, fol. 83a).
86 (Ibn Ghāzī manuscript, fol. 84a).
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Type 2: some māls equal some numbers
“five māls equal twenty” ( 6্ > 20; 6৘3 > 31).

Type 3: some roots equal some numbers
“three roots equal twelve” ( ৔4 > 12; 4৘ > 23).

Composite equations
Type 4: some māls and some roots equal some numbers

“a māl and ten roots equal twenty­four” ( 2্ ৔21 > 24;৘3 , 21৘ > 35).
Type 5: some māls and some numbers equal some roots

“a māl and four equal five roots” ( 2্ 4 > ৔6 ; ৘3 , 5 > 6৘).
Type 6: some māls equal some roots and some numbers

“a māl equals four roots and five” ( 2্ > ৔5 5; ৘3 > 5৘ , 6).
There is no notation in al­Hawārī’s chapter on algebra, not even for numbers. Recall that
in the first part of the book, on arithmetical calculation, he used the Indian figures only
to illustrate work that was to be performed on the dust board or other surface. Like the
previous chapter covering proportion and double false position, the calculations in the
chapter on algebra are given entirely in words because their execution in notation has
already been explained in the first part of the book.

213.1 Section II.2.2. Working out the six types (of equation).

213.2 The third stage in the solution to a problem by algebra is to solve the simplified
equation. Each of the six types of equation is solved by its own rule. The solutions to the
three simple types require a single division to get the māl or thing/root.

213.7 The example for type 1 is “threemāls equal fifteen things”, or 4্ > ৔26 . In modern
notation, this is 4৘3 > 26৘.
Students who had not studied algebra before would not be familiar with the wording of
algebraic equations. So like al­Khwārazmī andmany others, al­Hawārī explains each of his
equations by translating it into the enunciation of an arithmetic problem, taking advantage
of the two meanings of the words “māl” and “root”. In the equation “three māls equal
fifteen things”, the word “māl” takes its algebraic meaning as the name of the second
power of the unknown. Al­Hawārī reformulates it as an arithmetic problem: “the meaning
of this problem is: what quantity (māl), if we take its (square) root fifteen times, gives a
sum equal to three times the quantity?” Here the word māl takes the arithmetical meaning
of “quantity” or “amount”, and “root” means square root. Note how the equation and the
enunciation are worded differently, too. The two sides of the equation are collections of the
names of the powers that are declared equal to each other, while the enunciation expresses
an operation (“we take its rootͿ”) with a specified outcome (“gives a sumͿ”). Also, the
equation is stated with the algebraic “equal” (taʿdil, conjugated from ʿadala) while the
arithmetical version uses an “equal” (musāwiya) common to arithmetic.87

Here al­Hawārī calls the equation a “problem” (masʾala), the same word used for other
kinds of arithmetic problems or questions. This is also the word used for equations by

87 (Oaks and Alkhateeb 2005, §4.5).
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al­Khwārazmī, Abū Kāmil, and other early algebraists. The specific Arabic word for an
algebraic “equation” (muʿādala) first appears in the latter ninth century inQusṭā ibn Lūqā’s
Arabic translation of Diophantus’s Arithmetica. It is common to find both “problem” and
“equation” in later Arabic books and chapters on algebra, including Ibn al­Bannāʾ’s and
al­Hawārī’s books. Other examples of “problem” are in the passages at 213.13, 214.1,
217.1, 217.10, etc., and “equation” is found in the passages at 217.1, 227.14, 227.17, and
228.1.88

213.13 Al­Hawārī’s equation “two māls equal eighteen”, 3্ > 18, corresponds to our3৘3 > 29. Al­Hawārī again translates the equation into an arithmetical enunciation: “What
māl, if we add itself to it, becomes equal to eighteen?” Like in the first example, the
equation “two māls equal eighteen” does not invoke any operation, since it merely asserts
the equality of a couple of “māls” with 18. By contrast, the arithmetical version entails an
operation: one adds a māl to itself, with an outcome equal to eighteen.

214.1 Al­Hawārī’s equation “five things equal twenty”, ৔6 > 20, corresponds to our6৘ > 31. In the reformulation, the “thing” becomes a root of the māl: “What māl, if
we take five of its roots, gives a result equal to the twenty?” And again, the arithmetical
version is framed as an operation and its outcome.

214.7 The rules for the composite equations are naturally more complicated, and one
can easily show that they are equivalent to our quadratic formula. Many authors, like al­
Khwārazmī, Abū Kāmil, and al­Khayyām, give proofs to these rules using geometric dia­
grams in their algebra books. Others justify the rules with purely arithmetical arguments,
like Ibn al­Yāsamīn, Ibn al­Bannāʾ (in his Algebra and Lifting the Veil), and al­Fārisī.89
But it is also common for an author not to bother with proofs at all, like ʿAlī al­Sulamī,
Ibn al­Bannāʾ (in his Condensed Book), al­Hawārī, and Ibn Badr (ca. thirteenth century).
In these books, only the arithmetical rules for the solutions are given.90

214.9 Al­Hawārī’s type 4 example “a māl and two things equal fifteen”, 2্ ৔3 > 15,
corresponds to our ৘3,3৘ > 26. He again explains the equation in terms of an arithmetical
enunciation framed with operations, in which “māl” and “root” revert to their meanings
in arithmetic.

Some authors occasionally write out the whole phrase “half of the number of things”, but
it is usually written simply as “half of the things”, like it is here. In the modern term 3৘,
the 2 and the ৘ are both numbers which are joined through scalar multiplication. But the
medieval “two things” is simply a two of a particular type (“things”). In the present case
“the things” is 2, and its half is 1. Then 23 > 2, 2 , 26 > 27, ҇27 > 5, and 5 ѿ 2 > 4,
which is the unknown thing/root. The unknown māl is then 9. This type of equation will
have just one positive solution.

We can rewrite the solutions to each equation type as a modern formula. In this case,
Ibn al­Bannāʾ’s solution to the general equation ৘3 , ৃ৘ > ৄ can be transformed into

88 For more on the word “equation” see (Oaks 2010, §5.2).
89For arithmetical proofs, see (Oaks 2018a).
90 The books of these authors are named in Appendix C.



Commentary 213

৘ > ำ)23ৃ*3 , ৄ ѿ 23ৃ. But keep in mind that like the rules for double false position, these
rules are procedures consisting of a sequence of operations, and not static, written for­
mulas. The rule is spoken, in time, with one step following another, while our formula is
apprehended visually, and not necessarily left­to­right (or right­to­left) like rhetorical text
(see our comments above at 198.4).

214.14 In most problems the desired unknown is the “thing”, so the rule given above
yields the answer to the problem. But, often one is searching instead for the māl. For
instance, if we were asked to find a number given some condition involving its square
root, we might name the number ৘3 and create an equation with ৘3 and its root ৘. This is
why some algebraists give rules for finding the māl directly, even if in practice these rules
were not used much. Rules for finding themāl date back to Abū Kāmil’s late ninth century
Book of Algebra, and Ibn al­Bannāʾ included them in his own Book on the Fundamentals
and Preliminaries in Algebra. Al­Hawārī certainly learned these rules from Ibn al­Bannāʾ,
and he explains the calculations well for this equation.

215.3 The fifth type of equation might have two, one, or no positive solutions. Al­
Hawārī’s example with two solutions is “a māl and eight equal six things” ( 2্ 8 > ৔7 ;৘3 , 9 > 7৘).
The rule to solve this equation is similar to the rule for the type 4 equation. Take half of
the 6 to get 3, square it to get 9, subtract the 8 to get 1, and take its root to get 1. One of
the solutions is obtained by adding the 3 to the 1 to get 4, and the other is obtained by
subtracting the 1 from the 3 to get 2.

215.12 Ibn al­Bannāʾ gives the condition under which this equation will have exactly
one solution: a square of half the number of roots/things equals the number. Al­Hawārī’s
example is “a māl and nine equal six things” ( 2্ 9 > ৔7 ; ৘3 , : > 7৘). Half of the roots is
3, and its square 9 equals the 9 in the equation. The value of the thing is half the roots, or
3, and the māl is the number, 9.

215.14 Following the first rule at 215.3 for this kind of equation causes one to operate on
“nothing” a number of times. This is reminiscent of the operations on zero we saw earlier
in the book. It is not necessary to regard nothing or zero as being a number for these
operations to be carried out. See our comments on “operating on zero” at 74.17 above.

216.1 Next, al­Hawārī gives the rule for finding the māl directly for equations with two
solutions; in other words, when “the number is smaller than a square of half of the number
of roots” (he had not given this condition earlier). He works this out for the first type 5
example, “a māl and eight equal six things”. A square of the number of roots is 36, and
its half is 18. Subtracting the 8 leaves 10. Keep this in mind. Then square the 8 to get 64,
and subtract it from a square of the remembered 10, which is 100, leaving 36. Its square
root is 6. One solution is that the māl is 21 , 7 > 27, and the other is 21 ѿ 7 > 5.
216.11 Type 6 equations always have one positive solution. Al­Hawārī’s example is “a
māl equals two of its roots and three” ( 2্ > ৔3 3; ৘3 > 3৘ , 4). Al­Hawārī’s explanation
in terms of arithmetic is awkward, since it is the same as the equation, only with the
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arithmetical term yusāwī (“[is] equal”) replacing the algebraic yaʿdil (“equals”): “what
māl is equal to two of its roots and three?” This might be because the two terms in this
equation are stated after the single term, and al­Hawārī did not see that he could simply
switch them and write “what māl, if we add three to two if its roots, gives a result equal
to the māl?” This confusion may also be why he wrote in the equation “two of its roots”,
which is the arithmetical formulation, instead of the usual “two roots”.

In the solution, he takes half of the 2 and squares it to get 1. Adding this to the 3 gives 4.
Its root is 2, and adding this to half of the 2 gives 3, “which is the unknown thing”.

216.17 The rule for finding the māl directly is clear.

217.1 The rules that Ibn al­Bannāʾ gave for the three composite equations presume that
the number of māls is 1. Now he explains that if their number is greater or less than 1, we
should set the number to 1 by restoring or reducing it, and we must also adjust the other
terms of the equation in the same manner. Restoration and reduction have already been
described outside the context of algebra for whole numbers in Section I.1.6 at 129.1, and
for fractions in Section I.2.5 at 154.1. Once the number of māls becomes 1, then the rules
given above can be applied to find the solution(s).

The word we translate as “term” (ism) in this chapter is also the word for “name”. The
species “thing”, “māl”, and “cube” are often called “names” (first at 211.8, in the trans­
lation), and the same word is used to mean a term of an equation, like “three things”, “a
māl”, and “half a cube”. So “thing” as a name for the first degree unknown is an ism, just
as “six things” in the equation below is an ism. In the present passage Ibn al­Bannāʾ uses
another word, alqāb, also meaning “name”, for a term in an equation. In common use ism
is “given name”, while alqāb is “family name”.

217.10 Al­Hawārī’s first example is “twomāls and six things equal thirty­six” ( 3্ ৔7 > 36;3৘3 , 7৘ > 47). Here the two māls must be reduced to a single māl, so he multiplies it by
a half. The other terms must be reduced by a half to compensate, so the equation becomes
“a māl and three things equal eighteen” ( 2্ ৔4 > 18; ৘3 , 4৘ > 29).
217.15 Another way to do this is to divide the two by two, and divide the other terms by
two as well. Dividing by two and multiplying by a half may be mathematically equivalent,
but they are conceptually different. One is division by a whole number, and the other is
multiplication by a fraction.

218.1 The other example is “half a māl and two things equal six” ( 2্3
৔3 > 6; 23৘3 , 3৘ >7). Here the half of a māl must be restored to one māl, so he multiplies it and the other

terms by two to get “a māl and four things equal twelve” ( 2্ ৔5 > 12; ৘3 , 5৘ > 23). The
other way is to divide each term by a half.

219.1 Section II.2.3. Addition and subtraction.

In this section, al­Hawārī explains how to add and subtract algebraic expressions. After
giving some easy examples mainly taken from Lifting the Veil (219.5­220.4), he pays spe­
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cial attention to examples illustrating Ibn al­Bannāʾ’s rule for simplifying a problem of
subtraction in which one or both of the parts is a diminished algebraic amount. These
amounts are of the form “A less B”, and can be thought of as algebraic apotomes (220.5­
222.4). Al­Hawārī follows this with a subsection on simplifying equations (223.1­224.8),
since the techniques there are the same. In both subtractions and equations diminished
amounts are “restored” (with al­jabr) and like terms in the two parts are settled by “con­
fronting” them (with al­muqābala). We describe these terms along with “equalization”
(muʿādala) below in our comments at 220.5.

And it is here, in the present section, that rewriting the Arabic calculations in modern nota­
tion breaks down. The cause of the problem goes back to the way arithmetical operations,
and by extension algebraic operations as well, are worded in premodern mathematics. We
have been able to overlook the matter so far because it really only becomes an issue for ad­
dition and subtraction of quantities that are already composed of more than one term, like
the quantities “six eighths less a ninth”, “two and a root of eight”, or “ten less a thing”. This
wording is in turn linked with a difference in how multi­term quantities were conceived,
and only when the medieval conceptions are addressed will the Arabic “restoration” of
diminished amounts and other oddities of medieval practice make sense.

We begin our comments by examining the anatomy of Arabic arithmetical operations,
keeping in mind that algebra is a part of arithmetic. In the process, we address how Ara­
bic authors conceived of multi­term amounts, and we expose the inadequacy of modern
notation. Later, in our remarks on al­Hawarī’s examples, we continue to work with the
transliteration of the Arabic algebraic notation, which is naturally well­suited to represent
the calculations.

Al­Hawārī writes at 87.19 “We add the five to the three, giving eight”. Today we write
this as 4 , 6 > 9, which is spoken as “three plus five equals eight”. Mathematically,
the medieval and modern operations are the same, but they are presented differently. The
Arabic is phrased with a verb for the operation (in this example “add”, conjugated from
jamaʿa) and a word announcing the result (here “gives”, from bi­). The operation is per­
formed in time, with a specified outcome. By contrast, the verb in the modern version is
“equals”, and the word “plus” appears in its quasi­prepositional sense to indicate the op­
eration. There was no word in Arabic that means “plus”. The key difference between the
Arabic and modern ways of expressing the operation is that the former is presented as a
process that is worked through, while the latter is a static equivalence.

This difference becomes problematic for operations involving multi­term amounts, like
al­Hawārī’s “add a root of three to a root of fifteen… to get a root of three and a root
of fifteen” (at 180.10). Translated into modern notation, the operation does not seem to
accomplish anything: ҇4 , ҇26 > ҇4 , ҇26. Like in the first example, the operation
in the Arabic is expressed with the verb “add” (the first “+” in notation). Because the
two numbers cannot be written as a single root, the result is a binomial expressed as “a
root of three and a root of fifteen” using the common conjunction “and” (wa, the second
“+”). This wa is not another word for the arithmetical operation of addition. The result “a
root of three and a root of fifteen” is merely a collection of two objects, like saying “an
apple and a banana”. We see this kind of aggregation also in distinct fractions, explained
above at 136.8 and 139.1. The fraction “five sixths and four­fifths” from 136.8, written56 67 , is a single number expressed as two numbers gathered together. This kind of joining
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of numbers into an aggregation is even present in the way numbers with different ranks are
expressed, like 24, which is spoken as “four and twenty”. Where in Arabic a distinction
is made between the operation of addition and the expression of the result with “and”, in
our notation the plus sign “,” is used for both.
Another example, this one involving three multi­term amounts, is Ibn al­Hāʾim’s “add a
root of eight and a root of twenty to a root of five and a root of two…so their sum is a root
of eighteen and a root of forty­five”.91 Translated into modern notation this would be

)҇6 , ҇3* , )҇9 , ҇31* > ҇29 , ҇56/
The original Arabic calls for only one operation (the second “+”), but we see a total of four
additions in notation. And where the right side should be the outcome of that operation,
in our notation the two sides are symmetric, so it is equivalent to

҇29 , ҇56 > )҇6 , ҇3* , )҇9 , ҇31*/
Ibn al­Hāʾim’s operation calls for the addition of two binomials that results in another
binomial. We could adjust our notation to distinguish between aggregations and additions,
and use an arrow rather than the “=” to show the direction of the operation, like this:

)҇6 ' ҇3* , )҇9 ' ҇31* Ј ҇29 ' ҇56/
But this unhappy hybrid is no easier to read than our transliteration of the medieval nota­
tion. So we will use the latter, which in this case should look something like this:

҇6 ҇3 to ҇9 ҇31҇29 ҇56 /

Here, the horizontal line serves to separate the steps in the working out of the problem.
This notation for separating steps is rarely shown in manuscripts. Like we have seen for
al­Hawārī’s calculations with Indian numerals, Arabic textbooks describe the operations
rhetorically, and those that show the notation generally give only snippets to illustrate
what should be written on the dust­board. Of all the medieval Arabic books that show
the notation, we know of only one instance, from Ibn Ghāzī’s Aim of the Students, that
shows operations and results without any intervening text. Ibn Ghāzī separates each of his
steps with horizontal lines, whether there is an operation or not. So there may have been
no special sign that was used to announce the result of an operation. Like our medieval
sources, we only give snippets of the notation surrounded by text. And we will use the
horizontal line only the one time, above, to indicate the outcome of an operation.

Operations themselves were designated in notation by prepositions. Al­Ḥaṣṣār’s prob­
lem “Add three fourths to four fifths” is shown in one late twelfth century manuscript
as .92 Between the fractions is the preposition ilā, “to”, the same word appearing in
the rhetorical statement of the operation. The Arabic prepositions for addition, subtraction,

91 (Ibn al­Hāʾim 2003, 199.22).
92 (al­Ḥaṣṣār manuscript, fol. 68b).
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multiplication, and division are all different, so they suffice to indicate which operation is
intended. Al­Ḥaṣṣār performs this calculation rhetorically to get “one and two fifths and
three fourths of a fifth”, which is shown in notation as .

Another example is al­Mawāḥidī’s problem “Divide ten by three less a root of three”,

shown in notation as .93 Here the “by” (ʿalā) and “less” are in black, and the
numbers are in red. Above the last 3 is the dotless letter jīm (!" ) indicating a square root.
We transcribe this as “21 by 4 ϊ ҇4”. The result is given rhetorically as “five in number
and a root of eight and a third”, and is shown in notation as , or “6 ำ924”. Like
with distinct fractions (at 136.8 and 139.1), the aggregation shows no sign for “and”.94

In algebra, adding two terms of the same species is done by adding their “numbers”, or
what we call their coefficients. For example, adding three things to five things gives eight
things (in modern notation, 6৘ , 4৘ > 9৘). But, if the species are different, one can only
put the conjunction “and” (wa) between them, as we saw with binomials in the chapter on
roots. In his abridgment of his own commentary on Ibn al­Yāsamīn’s poem on algebra,
Sibṭ al­Māridīnī (15th c.) gives the example “if you add two dirhams to three things, the
answer is two dirhams and three things”.95 In notation, adding 2 to ৔4 gives 2

৔4 . The result
of the addition is a collection of five items of two different species or types, and it is
worded just like we would say “two apples and three bananas”.

Because a term like “three things” was conceived as a collection of three objects, much like
“three bananas”, irrational coefficients were not allowed. One can have three bananas or
two and a half bananas, but it makes no sense to speak of ҇23 bananas. Arabic algebraists
avoided irrational “numbers” of terms by taking a root of the entire term. For example, in
solving one problem Ibn al­Bannāʾ writes “you multiply a thing by a root of ten, to get
a root of ten māls”. Expressing this in modern notation, he multiplies ৘ by ҇21 to get҇21৘3. This way the “number” (the coefficient 10) remains rational, while the root of
the entire term is valid as an irrational number (the value of the “thing” in this problem is

found to be 21 ำ323 ϊ ำ323 ҇2111).96 Here is an example of how such a root appears

in notation in an Arabic equation, from Ibn Qunfudh’s commentary: . In

our transliterated version this is the equation ৔4 ำ 3্ > 29 ҇83, which corresponds to
4৘ , ҇3৘3 > 29 , ҇83 in modern notation.97
93 (al­Mawāḥidī manuscript, fol. 77a).
94 Occasionally the “and” will be written in the notation, usually to counterbalance a “less” in another part
of the expression.
95 (Sibṭ al­Māridīnī 1983, 59.8).
96 Or, in modern notation, 21 , ำ3 23 ѿ ำ3 23 , ҇2111 (Saidan 1986, 581.6).
97 (Ibn Qunfudh manuscript, 272.3). Here Ibn Qunfudh denotes “things” using only the three dots from the
letter .ش The equation is stated verbally as “three things and a root of twomāls equal eighteen and a root of
seventy­two in number”. The example is given to explain that the term “a root of two māls” is of the order
of things, since it comes from the “multiplication of a root of two by a thing”. For more on how medieval
algebraists dealt with irrational numbers in algebra, see (Oaks 2017).
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219.2 Al­Hawārī’s example of adding appended expressions is to add together a māl,
six things, and ten dirhams to get “a māl and six things and ten dirhams”. This result is a
collection or aggregation of seventeen items of three different species, and in notation we
write it as 2্ ৔7 10. Contrast al­Hawārī’s polynomial with its modern equivalent, ৘3,7৘,21,
where the arithmetical operation of addition appears twice along with scalar multiplication
and exponentiation.

Al­Hawārī does not give an example where the addends themselves are already expressed
with two or more appended names (i.e., where the terms are connected with “and”), so we
give the explanation from al­Karajī’s al­Fakhrī. He writes: “The way to do that is that you
add each species to the same species. For example, add five things and four māls to three
things and threemāls. You add five things to three things to get eight things, and fourmāls
to three māls to get seven māls. The sum is then eight things and seven māls.”98

219.4 Where the word “and” (wa) is used to express the sum of two different species, the
word “less” (illā) is used to express their difference. In Arabic grammar this word indicates
that the noun that follows is absent from the preceding noun, like in the phrase “all the
children except (illā) Amy”. Here “all the children” is called mustathnā minhu, literally
“excluded from it”, or better, “diminished”, and “Amy” is called mustathnā, “excluded”
or “absent”.

The same idea of something missing from something else applies also to mathematical
expressions with illā. Al­Qalaṣādī gives this example in arithmetic: “subtract a root of
five from a root of eight. You say the remainder is a root of eight less (illā) a root of
five”.99 Again, in modern notation the operation seems to accomplish nothing:҇9ѿ҇6 >҇9 ѿ ҇6. Instead, the result of the subtraction, “a root of eight less a root of five”
(҇9 ϊ ҇6), is an apotome, and apotomes by their nature contain no operation. This quan­
tity is a diminished ҇9, from which ҇6 has been removed. In English, we have no word
that functions quite like the Arabic illā. It is kind of like saying “an apple less a bite”
or “three cents short of a dollar”. We have already seen this use of “less” in the case of
excluded fractions, like the example “six eighths less a ninth” at 140.8. The notational
version of that example from one manuscript is shown above in our comments for 140.1.
See also al­Mawāḥidī’s notation for “three less a root of three” just above.

In mathematics, as in grammar, the two values A and B in expressions of the form “A
less B” are called mustathnā minhu (diminished) and mustathnā (excluded), respectively.
Al­Hawārī uses these terms in his explanation of excluded fractions beginning at 140.1,
in the context of quadratic irrational apotomes at 183.15, and in algebra on pages 219­222
and 230. Sometimes the diminished term is called “appended” (zāʾid) and the excluded
term “deleted” (nāqiṣ), as in the passages at 87.11, 183.15, 189.1, 211.2, etc. We translate
these two words as “exceeds” and “falls short”, respectively, in the solutions to problems
by double false position (first at 198.8).

So where we simplify an equation like ৘3 ѿ4৘ > 3,৘ by adding the subtracted 4৘ to both
sides, at 223.2 al­Hawārī restores (with al­jabr) the diminished māl in the left side of the
equation 2্ ϊ ৔4 > 2

৔2 to make it complete (restoration is explained more fully below at

98 (Saidan 1986, 118.5).
99 (al­Qalaṣādī 1999, 215.9, French 248.6).
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220.5) and then adds the ৔4 to the other side. Like with “plus”, there is no medieval Arabic
word with the meaning of the modern “minus”. For this reason, neither word occurs in our
translation.

219.5 On the previous line Ibn al­Bannāʾ had written “and the different excluded
[species] cannot be subtracted”. When an excluded species (a term following the word
“less”) has no counterpart from which it can be subtracted, that is, when it is “different”
from the others, the exclusion must remain. Al­Hawārī’s example is to “add a māl less a
thing to ten dirhams”, or, in notation, to add 2্ ϊ ৔2 to 10. There are no other “things” in the
problem from which we can remove the ৔2 , so the result of the addition is “a māl and ten
dirhams less a thing”, or 2্ 10 ϊ ৔2 . The answer is eleven objects of two types (one māl and
ten dirhams) that are diminished by a thing. Writing it entirely in modern notation makes
the operation appear as if all we do is rearrange terms: 21 , )৘3 ѿ ৘* > ৘3 , 21 ѿ ৘.
219.7 When adding expressions with deleted terms, subtract when possible the deleted
term from an appended term of the same power. The first example is to add 3্ ϊ 2্ to 10.
This is not a well­formed problem, since the first term, the “two māls less a māl”, is itself
not fully resolved. It is of course the same as “a māl”, and the answer to the addition is

2্ 10.

In the second example 2্ ϊ ৔3 is added to ৔21 , resulting in 2্ ৔9 . The third example is similar:
add 2্ ϊ ৔6 to ৔21 to get 2্ ৔6 . In modern notation this corresponds to adding ৘3 ѿ 6৘ to 21৘
to get ৘3 , 6৘.
220.1 Here al­Hawārī explains the particle “less” to designate the result of a subtraction
of different species. The result of subtracting a thing from a māl is “a māl less a thing”, or

2্ ϊ ৔2 . The result in the second example is 3্ ৔4 ϊ 10.

220.5 Al­Hawārī has postponed until this section his explanations of restoration (al­
jabr), confrontation (al­muqābala), and equalization (muʿādala) that were briefly de­
scribed by Ibn al­Bannāʾ above at 211.2. It is here, after all, that he applies them in prob­
lems of subtraction, and in the following subsection on simplifying equations.

The subtraction of appended terms in algebraic expressions (those connected with the
word “and”) is easy: one simply subtracts like terms. Subtraction is less straightforward
when it involves an expression of the form “A less B”, especially when this occurs in the
subtrahend. Ibn al­Bannāʾ and al­Hawārī cover these here. Like other Arabic algebraists,
al­Hawārī transforms the problem of subtraction into a simpler problem of subtraction
by restoring diminished amounts (of the form “A less B”), and confronting like terms in
the two sides. These are also the same steps one takes in simplifying equations, which is
covered in the next subsection.

As Ibn al­Bannāʾ remarked above at 211.2, the restoration of a diminished term (the “A”
in “A less B”) is the same restoration he explained of smaller numbers to greater numbers
described at 129.1 and 154.1, and it is also the same restoration we saw of fractions of a

100 (Oaks and Alkhateeb 2007, §3.3).
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māl at 217.1. To pick two examples, both “half a māl” ( 2্3 ) and “a māl less three things”

( 2্ ϊ ৔4 ) were considered to be incomplete māls. To restore the first of these one multiplies
by two, and to restore the second one adds back the missing “three things”.100

In his problem (T1), Abū Kāmil explains restoration in the context of simplifying the
equation “fifteen things less a māl and a half equal a māl” ( ৔26 ϊ 2্3 2 > 2্ ): “And restore
the fifteen [things] by the māl and a half so that it is equivalent to fifteen things. Then
add the māl and a half to the māl to get: two māls and half a māl equal fifteen things”101
( 2্3 3 > ৔26 ). Two distinct steps are performed. First, the “fifteen things less amāl and a half”,
being a deficient “fifteen things”, is restored to a full “fifteen things”. Then, to balance the
equation, “a māl and a half” is added to the other side. The restoration is the first of these
two steps.

In the early eleventh century al­Karajī applied the same wording in his explanation of how
to simplify a subtraction problem with a diminished subtrahend by restoration in his al­
Fakhrī, just before working it out for a few examples: “The way [to do it] is you restore
the subtrahend by what is excluded from it, and you add its same to the minuend”.102

By the twelfth century many authors had begun to also call the second step, the addition
of the same amount to the other side, a “restoration”. This new way of wording it as two
restorations was applied to the simplification of both subtractions and equations. Ibn al­
Yāsamīn simplifies the problem of subtracting ten less a thing from a thing (10 ϊ ৔2 from৔2 ): “you restore the ten by the deleted thing to get ten. Then restore the thing, which is
the greater part, by the same [amount] you restored the ten, to get two things. So it is as if
someone had said, subtract ten from two things”.103 Note that the restorations do not give
the answer to the subtraction, but result in an equivalent subtraction problem from which
the remainder will be found.

The modern version of Ibn al­Yāsamīn’s problem is ৘ ѿ )21 ѿ ৘*, which we work out by
distributing the minus sign to get ৘ ѿ 21 , ৘, and which reduces to 3৘ ѿ 21. Although
medieval algebraists knew that “when subtracting the deleted from another deleted, it is
appended” (from above at 87.11), they usually handled the problem of subtracting an apo­
tome through a restoration.

Like Ibn al­Yāsamīn, Ibn al­Bannāʾ also calls both steps restorations. His explanation in
Lifting the Veil of his remark from 211.2 applies to equations:

Restoring the deleted to the appended always entails the two sides. This is
because whenever you restore the appended by what is excluded from it on
one side, once your restoration is completed, that side has become greater than
the other side. Thus it is different from what is equated to it, so you restore it
by the excess.104

101 (Abū Kāmil 2012, 321.11).
102 (Saidan 1986, 120.14).
103 (Zemouli 1993, 229.1).
104 (Ibn al­Bannāʾ 1994, 309.3).
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Confrontation is performed whenever there are like terms in the two sides. The verb qabila
(“to confront”) is rarely used in the course of simplifying an equation or subtraction, how­
ever. The tenth­century CE lexicographer Muḥammad ibn Aḥmad al­Khwārazmī explains
the step:

And for an example of confrontation, suppose one encounters in a problem:
a māl and two roots equal five roots [ 2্ ৔3 > ৔6 ]. You cast away the two roots
which are with the māl, and you cast away the same from what it is equal to,
to get: a māl equals three roots, and that is nine.105

The idea is that the like terms are confronted, or put face­to­face, and their difference is
placed on the side of the greater. Like restoration, confrontation is performed in two steps.
The smaller amount is deleted from one side, and the smaller is subtracted from the larger
on the other side.

Ibn al­Bannāʾ explains confrontation similarly, though more tersely, in Lifting the Veil.106
What is new in Ibn al­Bannāʾ is the word meaning “equalization” (muʿādala). He writes:

Restoring the deleted to the appended is equalization with restoration, and
subtracting the appended from the appended or the deleted from the deleted
of things of the same species is equalization with confrontation.107

In both cases the “equalization” is the necessary compensation in the other part so that the
new subtraction or equation yields the same answer as the original. “Restoring the deleted
to the appended” is the adding of the deleted amount to the other side, and “subtracting the
appended from the appended or the deleted from the deleted” is apparently what one does
to compensate for deleting the smaller of the two like terms (the meaning is not presented
clearly for confrontation). In confrontation, one typically subtracts “the appended from
the appended”. Al­Hawārī gives an example of subtracting “the deleted from the deleted”
in the second solution to the problem at 223.7.

Restoration was also applied to the subtraction of apotomes. Al­Baghdādī explains that
one must “restore the exception by what it is deleted from on that side, and add the same
to the other side. Then subtract the subtrahend from the minuend”, just before giving the
example of subtracting “ten less a root of eighty from a root of eighty less five”.108

220.9 In the first of four examples of subtraction, the minuend is diminished. Here al­
Hawārī subtracts “two and a thing” (2 ৔2 ) from “a māl less three things” ( 2্ ϊ ৔4 ). Adding
the ৔4 to the minuend restores the 2্ , and adding the same to the subtrahend equalizes the
operation. Thus it is called “equalization with restoration”. The problem then becomes to
“subtract two and four things from a māl”, or 2 ৔5 from 2্ . The answer is 2্ ϊ ৔5 ϊ 2.

105 (M. i. A. al­Khwārizmī 1895, 201.3). The “what it [i.e., the left side] is equal to” is the “five roots” on the
other side of the equation.

106 (Ibn al­Bannāʾ 1994, 309.6).
107 (Ibn al­Bannāʾ 1994, 309.7).
108 (al­Baghdādī 1985, 221.1).
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221.1 In the second example, the diminished term is in the subtrahend: subtract 52 ϊ ৔6
from 3ৄ 30 (wewrite “c” for “cube”). Restoring the 52 and adding ৔6 to the other part changes
the question into one of subtracting 52 from 3ৄ ৔6 30. So far, this is equalization with restora­
tion. Now both parts have simple numbers, 30 and 52, and these should be confronted.
Al­Hawārī subtracts the smaller of the two from both sides, making the problem one of
subtracting 22 from 3ৄ ৔6 .
221.8 The step just described is called “confrontation with equalization” (he reverses
Ibn al­Bannāʾ’s words) since the 30 is dropped from one part, and is subtracted from 52
in the other. The answer is then 3ৄ ৔6 ϊ 22. In the modern version of this problem we would
not need to transform the subtraction of 52 from 3৘4 , 6৘ , 41 into the problem of the
subtraction of 22 from 3৘4 , 6৘, since for us the latter “problem” 3৘4 , 6৘ ѿ 33 is also
its solution.

221.13 In this next example, both terms are diminished. To subtract 12 ϊ ৔5 from 4্ ϊ ৔3
al­Hawārī adds ৔3 and ৔5 , totaling ৔7 , to both sides to turn the problem into one of subtracting
12

৔3 from 4্ ৔5 . We can see that he could have just added ৔5 to both sides, but our author is
following the rule to the letter: add to both sides all amounts that are lacking from dimin­
ished terms. From here, confronting the ৔5 with the ৔3 yields the problem of subtracting 12
from 4্ ৔3 , giving 4্ ৔3 ϊ 12.

222.1 The last example is worked out like the previous one. The problem is to subtract

2ৄ ϊ 3্ from 30 ϊ ৔5 . Restoring with equalizing means adding ৔5 3্ to both sides to get the
equivalent problem of subtracting 2ৄ ৔5 from 3্ 30. There is no confrontation to be done
here, since all terms are of different species. The answer is then 30 3্ ϊ 2ৄ ϊ ৔5 .
223.1 Subsection concerning examples with the two sides of an equation.

Now al­Hawārī shows how to apply restoration (al­jabr) and confrontation (al­muqābala)
to simplify equations in stage 2 to one of the six types. The phrase al­jabr wa­l­muqābala,
taken from these steps in stage 2, was the name given to the art of algebra. As mentioned
above, some algebraists would shorten the name to just al­jabr, and via transliterations in
medieval Latin and Italian it became the origin of our word “algebra”.

223.2 The first example is 2্ ϊ ৔4 > 2
৔2 . Restoring the 2্ amounts to turning the 2্ ϊ ৔4

into 2্ . To equalize, ৔4 must be added to the 2
৔2 , so the equation becomes 2্ > 2

৔5 . This is
a type 6 equation, so one should next follow the rule at 216.11 to solve it.

223.7 To simplify 2্ ϊ ৔4 > 24 ϊ ৔6 one restores first. Adding both ৔4 and ৔6 to both sides
gives 2্ ৔6 > 24

৔4 . Now the ৔6 is confronted with the ৔4 to get 2্ ৔3 > 24. This is a type 4
equation, and the rule for its solution is given above at 214.7.

Another way to do it is to confront the deleted ৔4 with the deleted ৔6 on the other side to
get a deleted ৔3 : 2্ > 24 ϊ ৔3 . Now the 24 is restored and ৔3 is added to the other side to get
2্ ৔3 > 24.
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223.14 The next example is to simplify 2্ ϊ 10 > 2্ ϊ ৔3 23 . Adding 10
৔3 23 to both sides gives

2্ ৔3 23 > 2্ 10; confronting the two 2্ s results in the equation 10 > ৔3 23 . Al­Hawārī cannot
begin this one by confronting the 2্ s, since it would leave terms deleted from nothing on
both sides, which would be impossible.

223.17 In the equation 2্ 10 > 51 ϊ ৔5 , adding the ৔5 to both sides gives 2্ ৔5 10 > 51,
and confronting the 10 with the 51 results in the simplified equation 2্ ৔5 > 41. Al­Hawārī
does not mention the confrontation. The other equations he gives are simplified similarly.

225.1 Section II.2.4. Multiplication and knowing the power and the term.

The power of a term in modern algebra is easy to determine, since it is the exponent.
The power of ৘4 is 3, the power of ৘23 is 12, etc. Knowing the power is necessary for
multiplying or dividing terms, such as figuring that ৘3 Բ ৘7 > ৘9 or 7৘4 × 3৘3 > 4৘. In
Arabic algebra the terms are expressed with the names “thing”, “māl”, and “cube”, so the
exponent must be calculated from these names. Ibn al­Bannāʾ tells us that the power of
the things is 1, ofmāls is 2, and of cubes is 3, and that for higher powers one collects these
numbers together. For example, the power of amāl cubemāl māl is 3,4,3,3 > :. From
225.2 to the end of the chapter the text has “[a] power (uss)” with the implied indefinite
article. We translate it as “the power” to make the reading easier, and because the power
of a term is unique.

226.1 To find a name of the term from the exponent, one need only come up with some
combination of māl and cube so the powers add up right. There was no standard way of
writing the powers greater than the fourth in Arabic, as we already knew from variations
offered by such authors as Abū Kāmil and al­Karajī. Al­Hawārī makes this terminological
flexibility explicit.

226.9 To multiply two monomials, multiply their numbers (i.e., coefficients) and add
the powers. If one of the terms is a simple number, then the power of the product is the
power of the other term.

226.12 Al­Hawārī explains his examples well. In notation they are ৔6 by ৔8 gives 4্6 , ৔21
by 7্ gives 7ৄ1 , ৔2 by 2ৄ gives ্2্ , 6 by 5্ gives 3্5 , and 7 by ্4ৄ gives ্ৄ32 .
227.10 In Arabic algebra there was no standard way of making the plurals for species
expressed with more than one term (māl, cube). Al­Hawārī makes the first term plural
when there is more than one, but because the plural and singular forms of Arabic nouns are
the same for numbers greater than ten, we often cannot tell if the second term is intended
to be plural. What appears to be “three māls cube” could be “three māls cubes” if we take
the “three māls” to be the number of cubes, and this number is greater than ten. See our
remarks above at 70.8 for a similar situation with “thousands”. In our translation we leave
these potentially plural forms singular. Perhaps Ibn al­Bannāʾ canmake all the terms plural
at 227.14 because he has not specified the number of the term.
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227.14 Here Ibn al­Bannāʾ explains how to reduce the degree of an equation. This
passage seems to be misplaced. It fits better in the section below on division.

If every term in an equation has degree of at least one, or, as al­Hawārī says, “you do not
have a number”, then drop the power of each term by the lowest power in the equation.
For a modern example, if we had 5৘4 ѿ 3৘3 > ৘6, the smallest power is 2, so we drop
all powers by two to get 5৘ ѿ 3 > ৘4. Zero cannot be a solution in medieval algebra,
so for al­Hawārī this gives an equivalent equation. Again, al­Hawārī explains his three
examples well. In notation they are: ্4্ > 5ৄ 2্1 reduces to 4্ > ৔5 10, 4ৄ > 2্1 ৔31 reduces
to 4্ > ৔21 20, and 2ৄ 2্1 > ৔4: reduces to 2্ ৔21 > 39.

228.8 Before Italian algebraists in the sixteenth century found solutions to irreducible
cubic and quartic equations, the only equation types that could be solved generally were
those that simplify, or could in some way be reduced, to one of the six types of degree 1
or 2.

228.9 When multiplying polynomials, some terms are appended and some are deleted.
For example, in “a hundred and a māl less twenty things” (100 2্ ϊ ৔31 ) the “hundred” and
the “māl” are appended, while the “twenty things” is deleted. Be careful not to interpret
“appended” and “deleted” as “positive” and “negative”. See the discussions at 219.1 and
219.4 above.

Al­Hawārī does not explain why a deleted term multiplied by a deleted term yields an
appended term, but the rule was well known. It would have been easy to derive it by
geometry, among other possible ways. Abū Kāmil, in fact, gives a geometric proof in the
context of the multiplication of “ten dirhams less a thing by ten dirhams less a thing”
(10 ϊ ৔2 by 10 ϊ ৔2 ).109

228.15 The example in notation is to multiply 8 ϊ ৔3 by 7 ϊ 5্ . First al­Hawārī multiplies
the terms that will give appended amounts: 8 by 7 gives 56, and ৔3 by 5্ gives 9ৄ . The other
two products yield deleted terms: 8 by 5্ gives 4্3 and ৔3 by 7 gives ৔25 . The product is then
9ৄ 56 ϊ ৔25 ϊ 4্3 .
229.1 Section II.2.5. Division.

229.2 Ibn al­Bannāʾ first explains how to divide a monomial by a monomial of lower
degree. Al­Hawārī’s first example is to divide 2্1 by ৔3 . The 10 is divided by 2 to get 5.
The power of the māls is 2, and the power of the things is 1, so the power of the quotient
is their difference, 1. The answer is then “five things”. His other example is to divide 2ৄ6
by ৔4 , from which he gets 6্ .
229.8 Note the wording: “The resulting five is then five māls”. In this term the “māls”
is the kind, and the “five” tells how many there are. The two words are the two aspects of
a single number or value, like saying “five dollars”. When there is only one of them, the

109 (Abū Kāmil 2012, 293.7).
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notation must still specify the number. If, instead of “ 2্ ৔6” we write “m ৔6”, it would be
like saying “dollars and five pesos”. This leaves unanswered howmany dollars/māls there
are. For this reason, throughout premodern algebra a “1” was always written in notation
when there is one of a term. By contrast, the 5 and the ৘3 in our 6৘3 are both numbers, one
known and the other not, that aremultiplied together. Our ৘3 itself, without any coefficient,
already designates a value, and so does not need a 1 in front.110

229.12 In the case that the powers of the two terms are the same, the result is a number.
Al­Hawārī’s example is to divide 2্3 by 4্ to get 4.

229.17 Dividing by a number gives the same power as the dividend. The example is to
divide ৔23 by 4 to get ৔4 . This and the previous rule are given separately because the power
of a number was not regarded as being zero. Zero was a place holder in Indian numerical
notation, and not a number.

230.1 If the dividend is diminished, divide both terms by the divisor. By this rule,
dividing 2ৄ3 ϊ 4্ by ৔3 gives 7্ ϊ ৔23 2 . A second example is dividing 2্1 ϊ ৔4 by 2 to get

6্ ϊ ৔23 2 . Our authors do not mention that the same rule works if “less” is replaced by
“and”, but this may be because the procedure is easily understood in the case of terms
gathered together.

230.11 Ibn al­Bannāʾ writes that one cannot divide a lower power by a higher power.
But one can at least eliminate common divisors. The example is to divide 7্ by 4ৄ to get
“two divided by a thing”. The division is still unresolved, but at least the common divisors
have been dealt with. Ibn al­Bannāʾ explains the same rule in his book on algebra. In one
example he writes “divide eight cubes by three māls māl”. The answer is given as “two
and two thirds divided by a thing”.111

When working with polynomials, the three operations of addition, subtraction, and mul­
tiplication can all be performed to yield another polynomial. But the division of a poly­
nomial by a polynomial often cannot be performed, which is why an algebraist would
sometimes admit an unresolved division in an equation. But writing the result of a divi­
sion in the form “ন divided by ঩” was generally avoided in algebraic problem­solving.
Ibn al­Bannāʾ’s problem (I.10) from his book on algebra is a good example. He solves this
particular problem five different ways, each time coming up with a clever way to avoid
unresolved divisions. (The enunciation and first solution are translated as problem [6] in
Appendix B.) Al­Karajī solves this same problem, but with the number 327 in place of 525 .
Only in his fourth and last solution does he set up the equation with divisions: “ten less
a thing divided by a thing and a thing divided by ten less a thing, and that equals two
dirhams and a sixth”.112

In modern notation, al­Karajī’s equation is 21ѿ৘৘ , ৘21ѿ৘ > 327 . We know only one book
that shows notation for divisions of algebraic expressions. In place of the division bar, Ibn
Ghāzī writes them with an elongated version of the Arabic letter qāf ,(ق) the first letter
110 See (Oaks 2009) and (Oaks 2017) for more on this difference.
111 (Saidan 1986, 541.2).
112 (Saidan 1986, 213.2).
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in the word qasama (“divide”). Here is the notational version of his “twenty­four divided
by half a thing and four and a half in number”, followed by our transcription (with a “d”
for “divided by”), and then the modern version:

৅ 35523 ৔23
35523 , 23৘

The manuscript indicates “things” with only the three dots from the letter .ش The simi­
larity between the simple bar for fractions and the elongated qāf for algebraic expressions
is deliberate, but because divisions are not fractions they are differentiated.

230.16 One cannot perform a division if the divisor is diminished. To “divide ten māls
by three less a thing” can only yield “tenmāls divided by three less a thing”. Of course, one
cannot perform the division if the divisor consists of two or more appended terms, either.
Dividing “ten māls” by “three and a thing” can only give “ten māls divided by three and
a thing”. Neither Ibn al­Bannāʾ nor al­Hawārī make note of this.

231.1 Section [on secret numbers].

It was not uncommon for authors of arithmetic books to include problems on finding secret
numbers. Other medieval authors who did so include Ibn al­Yāsamīn (d. 1204), Ibn al­
Hāʾim (1389), and Ibn Haydūr (ca. 1400). We have not found the particular problems
dictated to al­Hawārī in other books. It is probably by intent that there is one secret number
in the first problem, two secret numbers in the second problem, and three secret numbers
in the third problem.We describe the conditions usingmodern algebraic notation, in which
the secret numbers are ৘, ৙, and ৚, and ূ and ৃ are calculated values revealed to the guesser.
Keep inmind that there is no algebra (al­jabr wa­l­muqābala) in the questions or solutions.

231.4 First problem: the person is asked to secretly think of a number, ৘, and then
to calculate ৘3 and )21 ѿ ৘*3. If )21 ѿ ৘*3 = ৘3, the remainder ূ > ৘3 ѿ )21 ѿ ৘*3 is
revealed. Then ৘ > 23) 2ূ1 , 21*. If ৘3 = )21 ѿ ৘*3 then ূ > )21 ѿ ৘*3 ѿ ৘3 is revealed, and৘ > 23)21 ѿ 2ূ1*.
231.13 Second problem: the person is asked to secretly think of two numbers, ৘ and ৙,
that add to 10. This time the revealed number is ূ > ৘30৘৙, which of course is the same
as ৘0৙. Given the sum and ratio of two numbers, the numbers are also given. Al­Hawārī
does not give the rule past this point. We can solve our equations to get ৘ > 21ূ2,ূ , but if
the person chose whole numbers they are easy to guess without any particular rule. If the
revealed number is 9 or 1/9, the numbers are 1 and 9. If they are 4 or 1/4, the numbers are
2 and 8, etc.

232.1 Third problem: A secret number is divided into two other secret numbers. In
notation, suppose ৚ > ৘ , ৙ with ৘ ? ৙. Two numbers are revealed: ূ > ৘৙ ѿ ৙3 andৃ > ৘3 ѿ ৘৙. Then ৘ ѿ ৙ > ҇ৃ ѿ ূ and ৚ > ৘ , ৙ > ূ,ৃ৘ѿ৙ , so 3৘ > )৘ , ৙* , )৘ ѿ ৙* and3৙ > )৘ , ৙* ѿ )৘ ѿ ৙*.
233.2 The date 18 Dhū al­Qaʿda 704 AH corresponds to the Julian date June 12, 1305.


