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Chapter 1
Introduction

1.1 Ibn al-Banna’ and al-Hawari
1.1.1 TIbn al-Banna’’s textbook and al-Hawar’s commentary

Shortly before the year 1301 CE, in the western part of North Africa, the celebrated mathe-
matician and astronomer Ibn al-Banna’ (1256-1321) wrote what was to become a very pop-
ular arithmetic textbook. His Condensed [Book] on the Operations of Arithmetic (Talkhis
a ‘mal al-hisab) describes rules for operating with Arabic numerals and methods of arith-
metical problem-solving. One factor that made the book appealing was that it is brief.
Condensed expositions were popular because students then were often expected to mem-
orize textbooks, and this one covered just the right amount of material.

But brevity is also a drawback. Ibn al-Banna’’s little book contained no numerical
examples to illustrate how the calculations were to be performed, and his concise expo-
sition left no room for proofs or supplementary remarks. So, over the course of the next
three centuries, the Condensed Book inspired a number of people to write commentaries
elaborating on its contents in various ways. Ibn al-Banna’ himself became the first to write
such a commentary in 1301 CE (701H). In Lifting the Veil from the Face of the Operations
of Arithmetic (Raf ‘al-hijab ‘an wujith a ‘mal al-hisab) he expounds on his short work by
providing philosophical remarks, proofs, numerical examples, and expanded explanations.

Al-Hawari was among Ibn al-Banna’’s students in Marrakesh early in 1305 (704H).
Ibn al-Banna’ was teaching his Condensed Book, and already during the course of the
lectures al-Hawar1 was writing his own commentary. As he tells us in his introduction, al-
Hawart’s specific purpose was to provide numerical examples for Ibn al-Banna’’s rules.
The present book contains our edition, translation, and commentary of his Essential Com-
mentary on the Condensed [Book] on the Operations of Arithmetic (al-Lubab fi sharh
Talkhis a ‘mal al-hisab), which he completed June 12, 1305. In it, al-Hawar1 reproduces
passage by passage the entire text of the Condensed Book. After each of Ibn al-Banna’’s
rules he gives his own numerical examples, and, where he finds it necessary, he supple-
ments Ibn al-Banna’’s explanations with further remarks often extracted from his teacher’s
Lifting the Veil.

1.1.2 The authors and their works

Ibn al-Banna’’s full name is Aba al-‘Abbas Ahmad ibn Muhammad ibn ‘Uthman al-Azdi
al-Marrakushi. For those not familiar with the forms of Arabic names, we will dissect
this one. His given name is Ahmad, and he gained the sobriquet Abtu al-°Abbas when his
wife gave birth to a son they named al-°Abbas (4bi means “father”). The word ibn means
“son”, so he was the son of Muhammad, who in turn was the son of “Uthman al-Azdi. The
designation al-Marrakushi indicates that he was from Marrakesh, a city now in modern
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Morocco. He is best known today by the nickname Ibn al-Banna’, which means “son of
the builder”.

Ibn al-Banna’ was a renowned scholar known to have written nearly 120 works on
topics ranging from the rational sciences (mathematics, astronomy, logic) to religion (in-
cluding law), language (rhetoric and prosody), the occult sciences (including astrology),
agronomy, philosophy, and medicine.! He was born in Marrakesh and remained in Mo-
rocco his whole life.

Four of his books are relevant to us, and the Arabic text of each has been published:

« Condensed [Book] on the Operations of Arithmetic (Talkhis a ‘mal al-hisab, [M1]).?
This is Ibn al-Banna’’s brief introduction to calculation with Indian (i.e. Arabic)
numerals, including methods for finding unknown numbers. Because it does not
include examples, the book does not show the numerals. It was completed before
1301. Souissi’s 1964 edition also contains a French translation.

* Lifting the Veil from the Face of the Operations of Arithmetic (Raf ‘al-hijab ‘an
wujith a ‘mal al-hisab, [M8]).
Ibn al-Banna’’s own commentary to his Condensed Book was completed in 1301.
Although it contains many numerical examples that would be of help to students, the
theoretical and philosophical nature of many of his remarks suggest it was written
for a more sophisticated audience. Al-Hawar1 copied many passages from this com-
mentary into his own book, mainly those giving further explanations of the rules.

« Essays on Arithmetic (Magalat fi I-hisab, [M2]).*
This is another arithmetic book that covers much of the same material as the Con-
densed Book. In it, Ibn al-Banna’ sparingly shows the Indian numerals. He does not
cover algebra or double false position, but he does include a collection of problems
solved by single false position and proportion. Problems [1] and [2] in Appendix B
are translated from this book.

* Book on the Fundamentals and Preliminaries in Algebra (Kitab al-usil wa
l-mugaddimat fi I-jabr wa I-mugabala, [M6]).>
Ibn al-Banna’’s book on algebra, dating from the late thirteenth century, builds on
Abii Kamil’s late ninth century book on the same topic. This book explains problem-
solving by algebra at a level appropriate for students. Problem [6] in Appendix B is
translated from this book.

Al-Hawart’s full name is ‘Abd al-"Aziz ibn “Al1 ibn Dawud al-Hawari al-Misrati. The
designation “al-Misrat1” indicates that he was descended from the Libyan tribe of Misrata.
The “al-Hawart” tells us that he hailed from the Berber tribe named Hawari, which we
know emigrated from Libya to Morocco in the ninth century.®

The only secure dates we have on al-Hawar are found in his book. The earliest extant
manuscript, that of Medina (described below), reports that he completed it on Saturday,
18 Dhu al-Qa‘da, 704H, which is the Julian date 12 June 1305. Also, at line he
relates that Ibn al-Banna™ was dictating to him on Wednesday, the 28th of the month of

!(Lamrabet 2014, 164ff); (Sams6 2007).
2Published in (Ibn al-Banna’ [1969).
3Published in (Ibn al-Banna’ [1994).
“Published in (Ibn al-Banna’ [1984).
SPublished in (Saidan [1986, vol. 2).
%(Abdeljaouad and Oaks 2013, 11).
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Rajab. This can only be in 704H, which corresponds to 24 February 1305. Because we
know that Ibn al-Banna’ was in Marrakesh at that time, it places al-Hawart there as well.
We know nothing else about his dates, his locations, or his career. His commentary on
the Condensed Book is his only known work: Essential Commentary on the Condensed
[Book] on the Operations of Arithmetic (al-Lubab fi sharh Talkhis a ‘mal al-hisab, [M1]).

Al-Hawart delivered just what he said he would in his introduction: a book supple-
menting each of Ibn al-Banna’’s rules with numerical examples. There is nothing innova-
tive or theoretical about it. Like the Condensed Book, al-Hawar1’s commentary makes no
advances in either ideas or techniques. He gives no proofs, and he generally avoids philo-
sophical discussions. And yet, the very lack of innovation in this book makes it a good
source for learning about the nature of arithmetic in the epoch of its author, especially
when it is compared with other Arabic arithmetic books. By reading how these authors
worked with and expressed numbers and equations, we gain insights into the concepts un-
derlying their arithmetic. Furthermore, the apparent lack of interest of both Ibn al-Banna’
and al-HawarT in prior mathematical traditions, when coupled again with an examination
of other books, allows us to identify influences from Greece, the Middle East, and India
on the practical arithmetical tradition in Arabic.

1.1.3 Manuscripts of al-Hawar?’s Essential Commentary

The fourteen known surviving manuscripts of al-Hawar’s book were copied between the
fourteenth and nineteenth centuries CE. We published our Arabic edition based on the
following five manuscripts:

* Medina, MS Hikmat 21 hisab. 63 ff, 16 lines per page, 16 x 21 cm. The copyist
completed it on 18 Rab1’ I, 746H (Julian 18 July 1345). This manuscript does not
distinguish between Ibn al-Banna’’s and al-Hawar1’s words.

« Oxford, MS Marsh 378/3, fols. 109a-162a. Copied in 1444 according to Woepcke.®
In this manuscript a word or two is written in red ink to denote the beginning of a
new idea, or what we might consider as a new paragraph. This often corresponds to
a shift in author (Ibn al-Banna’ to al-HawarT, or vice-versa), but many times it does
not.

* Istanbul, Stileymaniye Library, MS Sehit Ali Pasa 1977/2 (Tiirkiye Yazma Eserler
Kurumu Bagkanlig1 Siileymaniye Yazma Eser Kiitliphanesi, Sehit Ali Pasa Collec-
tion 01977), fols. 54a-103b. Copied 20 Ramadan 880H/Julian 16 January 1476 in
Constantinople. The copyist distinguished Ibn al-Banna’’s text from al-HawarT’s
comments by placing in front of Ibn al-Banna’’s extracts the letter “u=" (sad),
which stands for musannif (““Author”), while passages from al-Hawart are preceded

[T 2

by the letter “ " (shin), which is the first letter of the word sharh (“commentary).

 Tehran, Library of Parliament MS 2672/2, fols. 10a-56b, copied before 972H/1564.
Red ink is employed here like in the Oxford manuscript.

* Tunis, National Library of Tunis MS 9940. 32 ff., 22 x 26 cm, 29 lines per
page. Copied 4 Jumada II, 1082H/ Julian 28 September 1671 in Damascus. In
this manuscript Ibn al-Banna’’s passages are preceded by the letters»’S(mim),
which either stands for matn or mu ‘allif, both of which mean “[original] text”, and
al-Hawart’s comments start with a “ " (shin) for sharh (“commentary’).

"Published in (al-Hawari 2013) and in the present volume.
8(Ibn al-Banna’ 1969, 8).
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For those not familiar with the notation, the Tehran manuscript is number 2672 in the
collection, and the ““/2” indicates that al-Hawar1’s treatise is the second treatise contained
in that manuscript. In this manuscript, al-Hawart’s treatise begins on the front (a) of folio
(sheet) 10 and ends on the back (b) of folio 56. The Tunis manuscript 9940 contains only
al-Hawar1’s treatise, and it is 32 folios long.

As is common with manuscripts, there are variations from one copy to another. In the
case of al-Hawar1’s commentary, these differences are all minor. Some are clearly errors,
while for others it is not easy to tell which variation the author originally wrote. When in
doubt we have sided with the oldest manuscript, that of Medina, copied only four decades
after the book was finished. There are, however, greater differences between the figures
drawn in the manuscripts. We discuss them below.

On the following pages are samples from each of the five manuscripts. We have
chosen the page that contains the double false position diagram just before 208.8. (Double
false position is described below in chapter [1.3.)
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Figure 1: Medina Manuscript fol. 55b, covering the text from 207.16 to 209.2.
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Figure 2: Oxford manuscript fol. 154b, covering the text from 208.6 to 211.15. The scan is in
black and white. Lighter shaded portions, which can be seen in the text in the middle of
the page, in the lines of the diagram, and as bars over some words, are in red ink.
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Figure 3: Istanbul manuscript fol. 97b, covering the text from 208.2 to 211.15. This manuscript
does not show the diagram.

13
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Figure 4: Tehran manuscript fol. 50b, covering the text from 207.1 to 208.9.
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Figure 5: Tunis manuscript fol 28a, covering the text from 208.2 to 213.5. This scan is in black
and white, so it is difficult to tell if there is anything written in red ink.

15
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1.2 Historical setting

Even a quick look over the translation reveals that al-Hawart’s arithmetic textbook dif-
fers from its modern counterparts in format, contents, and methods. These differences run
deeper than what might be seen as accidental variations. Medieval Islam was an intellec-
tual melting-pot of ideas from the various cultures it was in contact with, and al-HawarT’s
book exhibits these different influences, each with qualities of its own, and which were
not always amenable to merging. Further, medieval people conceived of numbers differ-
ently than we do today, and their system of education and their very attitude toward books
affected the way they presented their calculations. These historical, mathematical, and
conceptual issues warrant a few words to put the Essential Commentary in context, and
we begin in this section with history.

When the prophet Muhammad died in 632 CE, his empire already covered most of
the Arabian peninsula. The military push by his successors resulted in rapid conquests
both east and west, so that by the time the Umayyad dynasty fell to the “Abbasids in 750
CE the empire stretched from the Iberian peninsula in Western Europe all the way to the
Indus River. The Arab conquerors found themselves ruling over territory once controlled
by Greece to the west, Persia in the Middle East, and bordering India to the east.

One remarkable cultural phenomenon that arose from this expansion is known as
the Arabic translation movement. From roughly the middle of the eighth century until
the end of the tenth, the ruling class and other wealthy patrons subsidized the large-scale
collection, translation, and study of scientific and other knowledge. Books were sought out
from any available source, whether in Greek, Sanskrit, Persian, or Syriac. Topics included
the mathematical sciences (arithmetic, geometry, optics, mathematical astronomy, etc.)
as well as philosophy, astrology, geography, mechanics, medicine, agriculture, alchemy,
and assorted other topics. Concurrent with this translation activity, several authors wrote
down in books the arithmetic (including algebra), mensuration, and folk astronomy that
had previously been transmitted orally among people working in the trades in the Middle
East.

The causes of the Arabic translation movement are complex and are still being de-
bated. We will only note that it appears to have been spurred by the demands of managing
such a large empire combined with the demands of political expediency involving Persian
influence.’ The causes of its demise around the latter tenth century are necessarily equally
complex, but one factor seems to have been that they had just about run out of relevant
books to translate, and most of those that were left had been surpassed by original works
in Arabic.

In conjunction with the translation movement, scholars composed original works in
various branches of mathematics. The circulation in this singular environment of books
originating from different cultures naturally gave rise to the mixing of ideas and tech-
niques. To pick just a few examples: in astronomy, Indian trigonometry was adopted in
books based on Greek planetary theory; in geometry, definitions and constructions from
Greek texts were introduced to books on practical mensuration; and we find applications
of algebra to Greek geometry and of Greek geometry to algebra. This combining of el-
ements from different traditions was a lasting characteristic of Arabic mathematics and
science, despite their occasional incompatibility.

The prevalence of the word “Greek” in this last paragraph is not accidental. The
majority of works translated and studied by Arabic scholars were originally written in that

9(Gutas [1998); (Saliba 2007).
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language. And, just as important, Arabic authors consciously structured their mathematical
works, at least the more theoretical ones, on Greek models. Arabic scholars were drawn
in particular to the logical-deductive structures that guided Euclid’s Elements in geometry
and Ptolemy’s A/magest in astronomy. The philosophical underpinnings of Greek-inspired
mathematics in Arabic were also Greek in origin, and were drawn mainly from the works
of Aristotle and some late antique neoplatonists. While mathematicians in other cultures
had also engaged in stating definitions, outlining principles, and writing proofs, it was
the unified construction of a science based on these elements, together with underlying
philosophical principles, that for Arabic scholars set Greek mathematics apart.'”

After the translation movement had run its course, the production of new books con-
tinued unabated. Innovative work continued in algebra, geometry, optics, mechanics, and
various aspects of astronomy that included planetary models, trigonometry, and numerical
interpolation. In some branches of learning this momentum persisted longer than in oth-
ers. After the thirteenth century, for example, we see little advancement in algebra from a
theoretical perspective (including the algebra in al-Hawari’s book), while new and inno-
vative books on planetary theory continued to appear at least to the middle of the sixteenth
century.11

Even if Arabic scholars distinguished between practical (‘amalr) and theoretical
(nazarT) mathematics,'? it was common for the two to appear together in the same book.
A good example in which the two approaches mingle is the Completion of Arithmetic
of al-Baghdadi (died 1037)."* This book gives rules for practical calculation while
at the same time incorporating and building on various aspects of theoretical Greek
number theory. Practical topics could also serve theoretical needs: in the latter eleventh
century, al-Khayyam adapted the algebra of merchants and surveyors to aid in theoretical
geometric problem-solving by providing solutions to irreducible cubic equations via
conic sections.'* Often, practical techniques attracted the attention of mathematicians
who crafted Greek-style proofs for them. One example from the late ninth century is
Qusta ibn Luga’s short work proving the validity of the method of double false position
in the manner of Euclid’s Data."

Ibn al-Banna’ states his practical intent when he writes that his Condensed Book “is
useful for inheritance and business transactions and other [purposes]”.!® The commen-
taries it spawned, however, frequently take it in philosophical and theoretical directions.
For example, Ibn al-Banna’ ensured that the nature of the unit would become a source
for philosophical debate by the elaboration he gave the issue in his Lifting the Veil.!” And
many commentators, Ibn al-Banna’ included, provided proofs to many of the rules in the
Condensed Book. Al-Hawari’s commentary, on the other hand, retains the practical orien-
tation by focusing almost exclusively on numerical examples.

Like many Arabic mathematics books, Ibn al-Banna’’s Condensed Book is a kind of
hybrid, exhibiting techniques originating from Indian, Greek, and Middle Eastern sources.

10The classic work on Greek influence is (Rosenthal [1975). For mathematics and philosophy, see (Endress
2003).

See (Saliba 2007); (Ragep 2007); (Brentjes 2007).

12 As, for example, al-Farabi does in his Enumeration of the Sciences (first half of 10th c.) (al-Farabi 1953,
54.7).

B Al-Takmila fi I-hisab. Saidan published the Arabic text in (al-Baghdadi [1985). See also (Saidan [1987).
14(Oaks 20114d). Al-Khayyam himself used algebra this way to solve a particular problem of cutting a quad-
rant of a circle to produce a particular ratio.

15 A German translation is published in (Suter 1908—1909).

19(Ibn al-Banna’ 1994, 202.5).

17See our commentary at 65.2.
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Part I of the book is devoted to calculation with Indian numerals (we call them Arabic nu-
merals), which originated in India. Certain chapters contain material extracted ultimately
from Greek sources, like Euclid’s treatment of quadratic irrationals recast in numerical
terms (beginning at [173.4)), and portions of theoretical number theory borrowed from
Nicomachus of Gerasa (starting at 65.10 and [127.10)). Last, the methods of mental multi-
plication (beginning at[108.9) and the techniques of problem solving by proportion, double
false position, and algebra comprising derive ultimately from local oral tradition.
These different elements will now be described.

1.3 Arabic arithmetic

The two common notations for writing numbers in medieval Arabic were jummal and
Indian. Jummal notation is sometimes called abjad, after the first four letters in the tradi-
tional ordering of the Arabic alphabet: alif, ba, jim, and dal. In this system, the 28 letters
of the alphabet are assigned values 1, 2, 3,..., 9, 10, 20, 30,..., 90, 100, 200, 300, ...,
900, and 1000.'8 1t is an additive system, so to express the number 542, for example, one

writes the letters whose values are S.OQa( &), 4 ﬁ)gi’and 2(<Lp éf.a . Jummal notation

makes its appearance in al-Hawari’s book only in the rule for casting out sevens, in the
figures just before and (see our commentary at 88.10)). Jummal numerals were
associated with two forms of calculation, finger reckoning and sexagesimal arithmetic,
which will be described below.

We acquired our “Arabic” numerals from Arabic sources, but Arab-speaking people
called them “Indian” (al-hindi) numerals because they learned them from Indian sources.
Indian numerals consist of the signs for 1, 2, 3, ..., 9, together with a 0 for the empty
place. This is the system taught in Ibn al-Banna’’s textbook and illustrated by al-Hawar1’s
examples. The shapes of the numerals have varied greatly over time and place, even among
the manuscripts of al-Hawari’s book. See our commentary at [69.2 for some of the forms.

There was another way of writing numbers that was practiced mainly in the far west-
ern part of the Islamic world. The earliest extant mention of riami (“Roman”) signs is a
brief description in the Chapters on Indian Arithmetic by al-Uqlidisi, completed in Dam-
ascus in 952-53 CE (341H).!? Other texts mentioning these numerals date from the latter
twelfth century or later, and were written in al-Andalus and Morocco.?? Ibn al-Banna’
wrote a book on calculation with these numerals, which were popular with public admin-
istrators. They were also called “Fez signs”, after the Moroccan city. Like abjad numerals,
this is a decimal and additive system, with 27 individual signs for 1, 2, 3,..., 9, 10, 20,
30,..., 90, 100, 200, 300,..., 900. The peculiar shapes of the numerals cannot be securely
said to derive from any other known system. No examples are known in al-Andalus after
the thirteenth century, but the system remained popular with accountants in Morocco until
about a century ago. Ibn al-Banna’ and al-HawarT mention rizmi signs in passing at
and [104.1.

The three main methods of calculation in medieval Islam were finger reckoning, sex-
agesimal arithmetic, and Indian arithmetic. Sexagesimal arithmetic and finger reckoning
had already been in use in the Middle East prior to the rise of Islam. And although Indian

8 There were minor differences between east and west in the Islamic world in the schemes used.
19(al-Uqlidist 1978, 310); (al-Uqlidist [1984, 386). The signs are likely related in some way with special
signs appearing on Roman coins minted in Siscia in the period 348-350 CE (Kent [1981), 343, 359, 364-67).
20 Al-Hassar (d. before 1194), writing in the Maghreb, mentions them in his Complete [Book] on the Art of
Number (Guergour 2000, 68). The signs, which varied between east and west, are also mentioned in the
writings of Mozarabs (Christians writing in Arabic) in Toledo around the same time (Colin [1933], 204).
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numerals are attested in Syria by the mid-seventh century CE, it seems that rules for cal-
culating with them became known to Muslims about a century later through direct contact
with Indian scholars, at the start of the translation movement. The three systems remained
popular throughout the medieval period, and were often described together in the same
book.

Finger reckoning was a method popular among merchants, government secretaries, and
surveyors. Calculations were preformed mentally in base ten, with intermediate results
“stored” by positioning the fingers in particular ways. It was called hisab al-yadd (hand
arithmetic), al-hisab al-hawa 1 (aerial calculation), al-hisab al-maftith (open calculation),
or sometimes hisab al-riim wa [- ‘arab (calculation of the Romans (i.e., Byzantines) and
Arabs). In one of many examples, Abii I-Wafa’ (tenth century) explains how to multiply
46 by 28:

We begin by multiplying forty by twenty, to get eight hundred, and by eight
to get three hundred twenty. Hold them. Then we multiply the six by twenty
to get one hundred twenty, and by eight to get forty-eight . Then we add them
all to get one thousand, two hundred eighty-eight.?!

The command “hold them” means “store the intermediate sum” 1,120 by positioning the
fingers. Then, after the next sum 168 is calculated, the two can be added to get the answer.
When the result of such a calculation was recorded on paper, jummal notation was used.
Finger reckoning and jummal numerals played roles similar to the abacus (counters ma-
nipulated on tabletops) and Roman numerals in the West: the first was for calculating and
the second for recording the numbers.??

Most Arabic arithmetic books covering mental calculation do not address the actual
positioning of the fingers. One that does is “Alf ibn al-Maghrib1’s fifteenth-century Poem
on Reckoning with Finger-Joints.>> Units were stored by positioning the last three fingers
on the right hand, tens with the right-hand thumb and index finger, hundreds with the left
hand thumb and index finger, and thousands with the last three fingers on the left hand.
The earliest illustration we know for the positioning of the fingers is found in an Italian
textbook, the 1494 Summa de Arithmetica of Luca Pacioli, shown below.?* Tt differs from
‘Al ibn al-Maghrib1’s system mainly by switching the hundreds and thousands, and by
switching the left and right hands.

We know from literary references that finger reckoning had been practiced by the an-
cient Greeks and Romans, and it was probably known in other parts of the ancient world as
well.?> The passage from Aba 1-Wafa’ translated above is from his Book of What is Nec-
essary for Scribes, Businessmen, and Others in the Science of Arithmetic.?® This book,
composed in the period 961-976 CE, is the earliest extant Arabic book explaining the
techniques of mental calculation. This and later books on the topic cover mainly multipli-
cation, division, and ratios, including some computational shortcuts. They also typically

21(Saidan [1971], 142.17).

22For the Roman and later European abacus, see (Pullan [1968).

2 Saidan describes the poem and translates the relevant parts in (Saidan [1968). Pellat gives an edition and
French translation of a similar poem from the previous century, by Abii ‘Abd Allah Muhammad ibn Ahmad
al-Mawsilt al-Hanbali (#768), in (Pellat 1977, 52-59).

24The illustration is in (Pacioli 1494, fol. 36b). We reproduce a scan from the 1523 printing from the
Columbia University Library copy. This illustration is identical to that in the 1494 printing.

25(Smith [1958, vol. II, 196ff); (Pellat 1977).

26Edited in (Saidan [1971)). See (Saidan [1974) for a description of the contents.
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Figure 6: Finger positions in Luca Pacioli’s 1494 Summa de Arithmetica.

have chapters on mercantile and other practical problems in which the rules are applied.
The more common methods for solving these problems are the rule of three, single false
position, double false position, and algebra. Abu I-Wafa’’s book, like many others on fin-
ger reckoning, also gives rules for base sixty calculations. Ibn al-Banna’ covers several
rules for mental multiplication, most copied from Ibn al-Yasamin’s late twelfth century
Grafting of Opinions, beginning at [L08.9; and his rules on division from through
124.19 are also from finger reckoning.

Sexagesimal arithmetic is calculation in base sixty. This place-value system is like our
base ten system, with sixty taking the place of ten. Where, for example, our 9062 is
2+6-104+0-10%+9- 103, the sexagesimal number 12,0,45,1 is 1+45-60+0-60%+12-60°
or, in base ten, 2,594,701. Sexagesimal arithmetic dates back to late third millennium BC
Mesopotamia, where the numbers were recorded in cuneiform on clay tablets. It became
the standard system for Babylonian astronomers, and later it was adopted by astronomers
writing in Greek, Arabic, Sanskrit, and other languages. It is because of sexagesimal arith-
metic that today we still have sixty seconds in a minute and sixty minutes in an hour. In
Arabic the numbers 1 through 59 were written in jummal form so, reversing our 12,0,45,1,
the number would have looked like | 4a8<. The “0” is the sexagesimal zero, or empty
place. Sexagesimal arithmetic is not covered in al-Hawari’s book.

Indian arithmetic is calculation in our base-ten place-value system using the nine figures
1, 2, ..., 9 and the zero (0). This system originated in India probably around the first
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century CE, though the earliest Indian text showing the numerals dates from the late sixth
century. The numerals had reached Syria by 662 CE when the bishop Severus Sebokht
mentioned them, and they were known to the Muslims by 760 CE.

The earliest known Arabic treatise on Indian numerals is the Book on Indian Calcu-
lation,” written by Muhammad ibn Miisa al-Khwarazmi in Baghdad in the first half of
the ninth century. Both the Arabic original of this book and a Latin translation made in the
twelfth century are lost, but we do have a reworking of the Latin translation. It appears that
al-Khwarazmi1’s original treatise described how numbers are formed by the nine figures,
and then covered in order the operations of addition, subtraction, doubling, halving, mul-
tiplication, division, all for whole numbers; then operations on fractions were discussed,
and finally square root extraction. This book is already a hybrid, since the fractions are
taken from finger reckoning and sexagesimal arithmetic.

Al-Khwarazm1’s rules are intended to be worked out on a dust board or some other
ephemeral surface that allows for the easy erasing and shifting of digits. A dust board is a
flat board covered in dust or fine sand on which one wrote with a finger or a stylus. It was
a medium for working through calculations much like today’s chalkboard or whiteboard.
It is because of this association with the dust board that “Indian arithmetic” (al-hisab
al-hindr) was also called “board arithmetic” (hisab al-takht) or “dust arithmetic” (hisab
al-ghubar). Another erasable writing surface was the wax tablet, with wax instead of sand
covering the board.?®

The earliest extant Arabic book on Indian reckoning is al-Uqlidisi’s mid-tenth cen-
tury Chapters on Indian Arithmetic, mentioned above.?’ This book covers much the same
material as al-Khwarazmi’s, but with some innovations. It is the earliest we know that ex-
plains decimal fractions, like 4.75 instead of 4%. Al-UqlidisT also gave rules for working
out the computations with pen and paper, without any erasing. He famously explains that
one advantage of switching to ink and paper is because the dust board is associated with
“the misbehaved who earn their living by astrology on the streets”.>°

Al-Uqlidis1’s innovations did not catch on quickly. The dust board remained popular
for centuries, only disappearing in some parts of the Muslim world at the beginning of
the 1900s. Most of Ibn al-Banna’’s rules, in fact, are intended for the dust board or wax
tablet, since they call for the erasing of digits. He does give three rules for multiplication
that require no erasing, at 101.16, [103.14], and [106.11]. These rules will work for pen and
paper, but they may have been intended for the /lawha (board; tablet). This was a board
covered in soft clay on which one wrote with a cane stick dipped in ink. Because the
lawha 1s reusable it would have been more economical than paper. Decimal fractions did
not catch on quickly, either. Ibn al-Banna’ does not describe them at all, but instead works
with the common forms of fractions from finger-reckoning.

2TKitab al-hisab al-hindi. Following (Saidan [1987, 44), we attribute this and some other books listed in Ibn
al-Nadim’s Fihrist under Sanad ibn ‘Al1 (#48) to al-Khwarazmi. This is our source for the Arabic title of
the book.

Z8For more on the dust-board, and on the transmission of Arabic numerals generally, see (Kunitzsch 2003).
2The Arabic text is published in (al-UqlidisT 1984), and Saidan’s English translation is published in (al-
UqlidisT [1978).

3%Saidan’s translation, from (al-UqlidisT 1978, 247).
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1.4 Greek mathematics and Arabic arithmetic
1.4.1 Greek and Arabic concepts of number

Some Arabic arithmeticians gave their subject the semblance of a rigorous foundation by
adding definitions from Greek number theory. This might have been a good way to merge
different approaches to arithmetic were it not for the incongruity of their number concepts.
The numbers of the Arabic arithmeticians (hussab) include any positive quantity that arises
in calculation, including fractions and irrational roots. But numbers in Euclid’s Elements
Books VII-IX and Nicomachus’s Arithmetical Introduction, the two main Greek sources,
are restricted to positive integers.>!

Aristotle’s works provided the main philosophical backdrop to this particular Greek
concept of number, at least as it circulated in medieval Islam. In his Categories, Aris-
totle divided the genus of “quantity” into discrete and continuous: “Of quantities some
are discrete, others continuous...Discrete are number and language; continuous are lines,
surfaces, bodies, and also, besides these, time and place”.32 Geometric magnitudes are
continuous because they are infinitely divisible. Any line, surface, or body can be divided
into as many parts as one wishes. By contrast, numbers are discrete because the unit (1) is
necessarily indivisible. How can it be a unified whole if it can be split into parts? Euclid
was repeating the accepted definition when he wrote “[a] number is a multitude composed
of units”.>3 There are two important consequences of these characterizations of the unit
and number. First, “one” cannot be regarded as a number because it is not a multitude.
One is instead the origin or cause of number, and the sequence of numbers begins with
two. Second, there can be no fractions due to the indivisibility of the unit, so the only true
numbers are integers.>*

Although the relevant Greek works had been translated into Arabic by the end of the
first quarter of the ninth century, the Greek notions of unit and number took some time to
make their way into practical Arabic arithmetic books. The earliest books we consulted
give no definition of number, and instead begin with instructions on how to perform oper-
ations.>> Philosophical treatments of arithmetic could not ignore the issue, however. Two
early books whose chapters on arithmetic depend heavily on Nicomachus are the Treatises
of the Brethren of Purity (10th c.) and the Book of Instruction of the Elements of the Art
of Astrology (11th c.) by al-Biriin1. These two books get around the problem of the in-
compatibility of Greek and Arabic numbers by asserting that although the unit is properly
speaking indivisible, in practice we work with a divisible quantity that we call a “unit”.3
Some later authors cited both views without trying to reconcile them, like the Persian
al-Farist (died 1319) in his Foundation of Rules on Elements of Benefits. Al-Farisi first

31(Djebbar 2004). There was no single Greek concept of number. Diophantus’s Arithmetica (ca. fourth cen-
tury CE) shows many fractions, and the works of Hero of Alexandria (first century CE) give many rational
approximations to irrational numbers. Also, because number concepts, whether in Greek or Arabic, were
based in counting or measuring, it would not have occurred to ancient or medieval mathematicians that neg-
ative or complex numbers could exist.

32 Categories 4b20-24, translated in (Aristotle [1963, 12). Language is discrete because it consists of indivis-
ible syllables.

33 (Euclid 1956, vol. 2, 277).

34For these ideas in Aristotle, see (Cleary 1995, 345ff).

3>We checked the arithmetic books of al-Khwarazmi (Latin redaction), al-Uqlidisi, Aba 1-Wafa’, Kashyar
ibn Labban, al-Karaji, al-Baghdadi, Ibn al-Sambh, and Ibn al-Haytham.

39The Brethren of Purity write “The ‘one’ is said in two ways: in its proper usage, and by way of metaphor.
In its proper usage it is a thing that cannot be partitioned or divided...As for ‘one’ in metaphor, it is every
aggregate that is considered a unity. So, for example, ten is called a “unit’, and a hundred is called a “unit’,
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reviews Aristotle’s classification of continuous and discrete quantity before he presents
the Greek definitions of the unit and of number. He then cites the definition of the prac-
tical arithmeticians (hussab) of his time: “Number is a quantity you obtain from one by
repetition or partition or both, and it is clear by this meaning that the type is divided into
whole numbers and their fractions™.’

Evidence of Greek influence on practical arithmetic in Western Islam appears in the
earliest extant texts from the late 1100s. Al-Hassar, who probably worked in Salé in Mo-
rocco, added to his descriptions of the digits that one “is the origin of number” and that two
“is the first number”, as did his contemporary Ibn al-Yasamin.*® About a century later, Ibn
al-Banna’ became the first arithmetician we know of to give Euclid’s definition of number
in a book on practical calculation. He begins his Essays on Arithmetic with

Number is a multitude composed of units...Its origin emerges from the arith-
metical one. And the arithmetical one is by its essence not a number, since it
is the cause and number is the effect.’”

Ibn al-Banna’ took a different approach in the Condensed Book by condensing the defini-
tions of Euclid and the arithmeticians in one short statement: “A number is a collection of
units, and it is divided according to how it is produced into two kinds: whole and fraction”.
(See our commentary at 65.2.) The friction between the Greek and Arabic number con-
cepts also comes into play in Ibn al-Banna’’s definitions of multiplication (95.2)), division
(117.2), and fractions ([133.1)).

The incompatibility problem was solved by the Persian mathematician and poet “U-
mar al-Khayyam (Omar Khayyam), though his work does not seem to have been noticed
by arithmeticians. Where geometric magnitudes in Euclid and other early Greek geome-
ters do not possess any numerical measure, al-Khayyam worked with arithmetized lines,
planar regions, and bodies, and he identified the numbers of the arithmeticians with the di-

mensionless measures of such continuous magnitudes.*’ This way a number like 1/10 can
be the length of a line, the area of a planar figure, or the volume of a body. Consequently
there are two different units, the indivisible arithmetical unit and the divisible geometric
unit.

1.4.2 Greek number theory and geometry in Arabic arithmetic

Books VII to IX of Euclid’s Elements and Nicomachus’s Arithmetical Introduction de-
scribe theoretical arithmetic for positive integers, or what we would call elementary num-
ber theory. Topics include the classification of numbers into even, odd, and their sub-
species; prime numbers and divisibility; amicable and perfect numbers; ratio and propor-
tion; figurate numbers; and series summation.

and a thousand is called a ‘unit’ (translated in (El-Bizri 2012, 67). See also (Goldstein 1964, 136)). Al-
Birtint writes “Although ‘one’ is in reality indivisible, nevertheless the unit, one as a technical expression,
employed in dealing with sense-objects, whether by weighing, measuring by bulk, or length or number, or
merely in thought, is obviously capable of sub-division” (translated in (al-Birtint [1934], 24)). Al-Baghdadi
tacks onto his Completion of Arithmetic a chapter on number theory based in Nicomachus (Chapter 6), but
he does not address the nature of the unit.

37(al-Farisi 1994, 71.8). Sibt al-Maridini (died 1506), working in Egypt, similarly contrasted Euclid’s defi-
nition with that of the “Arithmeticians” (Sibt al-Maridini 2004, 73.5). See also (Djebbar 2004, 315-318).
38 (al-Hassar manuscript, fol. 3b); (Zemouli h.dl, 5).

39(Ibn al-Banna’ 1984, 121.4).

40(Oaks 2011a, 59fF).
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Ibn al-Banna’’s Condensed Book covers the classification of even numbers (65.10)
and the sieve of Eratosthenes ([127.10)) for finding prime numbers. Both are taken directly
or indirectly from the Arabic translation of Nicomachus, as is the classification of differ-
ent kinds of proportion that al-HawarT copied from Lifting the Veil ([195.2)). Several defini-
tions from Book VII of the Elements found their way into Ibn al-Banna’’s and al-Hawar1’s
books, certainly through some intermediary Arabic source. Besides definition VII.2 for
“number” at [65.2, these include definition VIL.16 for “side” and “surface” at and
67.3, VIL.3-4 for “part” and “parts” at [133.1], and also possibly VII.10 for “oddly odd” at
66.7 and VII.15 for “multiplication” at 05.2). Like the words we translate as “square” and
“cube”, “side” (dil ) and “surface” (sath) are arithmetical terms borrowed from geometry.

Rules for summing finite series were known in both India and Greece before the
advent of Islam, and probably in other parts of the old world as well.*! The rules we read
in Arabic books ultimately derive from Greek sources, with some innovations introduced
by the Arabic authors.*? Ibn al-Banna’ likely took his rules (starting at [79.13) from another
Arabic source.

It is largely because numbers could take only integer values that geometric mag-
nitudes in Euclid, Apollonius, and Archimedes are without numerical measure. For the
Pythagorean Theorem, for example, Euclid drew literal squares on the three sides of a
right triangle and showed that the square on the hypotenuse is the same size as the other
two together.*> While working in the Greek tradition, Arabic mathematicians properly
kept numbers out of geometry. One example is Thabit ibn Qurra’s treatise proving that the
volume of a section of a paraboloid is half the volume of the enclosing cylinder.**

By contrast, Arabic practitioners held a concept of number deriving as much from
measurement as from counting, allowing them to work freely with fractions and irrationals.
By routinely assigning numerical values to geometric magnitudes in surveying work and
in architecture, they were able to foster the intimate connection between arithmetical and
geometrical calculation. So when Euclid’s Elements became available in Arabic transla-
tion in the late eighth century, mathematicians writing in a practical vein did not hesitate
to reinterpret propositions from the geometric books in terms of arithmetic.*> Thabit ibn
Qurra, for example, gave a numerical reading to Elements propositions 1.5 and I1.6 in his
proofs for the rules to solve three-term algebraic equations.*®

Euclid’s treatment of quadratic irrational lines in Book X was particularly amenable
to numerical interpretation. One treatise from the ninth century, probably written by al-
Mahani, gives numerical calculations of the square roots of binomials and apotomes.*’
For example, a line in Euclid that is divided into two incommensurable parts satisfying a
certain condition could now be identified with the number 5 + \/E . Ibn al-Banna’ briefly
presents the arithmetical version of the theory of quadratic irrationals in his Condensed
Book, and al-Hawari gives it a thorough review with the help of some passages from Lifting
the Veil (starting at [73.4). Al-Hawar also copied from Lifting the Veil the manipulations

#'Two Indian books containing such rules are the Aryabhatiya of Aryabhata (ca. 500 CE) and the Pari-ganita
of Sridhara (8th or 9th ¢.) (Plofker 2009, 131-132); (Sridhara Acarya [1959).

42(Saidan 1996, 341); (Djebbar 2004, 310).

“Proposition 1.47.

#(Rashed [1996, 319ff).

“Even Greek geometers in late antiquity had begun to assign numbers to magnitudes.

46 (al-Khwarizmi 2009, 34-42). We deliberately cited the same author in this paragraph and the last. For
Thabit ibn Qurra, a proposition in the tradition of Greek geometry should be free of any arithmetizations,
but for algebra this rigor is relaxed. It is the setting, not the mathematician, that determined which approach
is appropriate.

47(Ben Miled 2005).
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of geometric proportion that Ibn al-Banna’ took, once again directly or indirectly, from
definitions 12-15 in Book V of an Arabic translation of Euclid’s Elements (]196.16)).

1.5 Arithmetical problem solving

Part II of the Condensed Book covers arithmetical problem-solving techniques that were
originally associated with finger reckoning. Here, instead of solving problems that ask for
the result of a calculation on given numbers, Ibn al-Banna’ explains methods for finding
unknown numbers. For instance, instead of working out a calculation like “divide thirty-
five by fifteen” (at[120.16), al-HawarT poses the problem “a quantity: taking away its third
and its fourth leaves ten. How much is the quantity?” (at [199.1]).

Today, a problem asking for an unknown number is typically viewed as an algebra
problem. We would solve the problem %'ust mentioned by naming the quantity x, and then
setting up and solving the equation x — - x— %x = 10. But problems like this were regarded
by medieval mathematicians as belonging to arithmetic, since algebra was just one of sev-
eral methods available to solve them. In fact, al-Hawart works out this particular problem
not by algebra, but by double false position (described below). The independence of prob-
lems from the methods of solution is most evident in other books that show the same
problem solved by two or three different methods. One example is a problem of al-Hassar
translated in Appendix B, problem [7].

Here is a brief list of the problem solving methods covered by Ibn al-Banna’. These
are the most common among the methods described in Arabic arithmetic books:

* The method Arabic authors called “the four proportional numbers” is known to us
also as “the rule of three”. Given a proportiona : b :: ¢ : d, this method shows
how to find one of the values given the other three. It is explained starting at [195.9.
Al-Hawari does not solve any problems by this method, so we translate one from
Ibn al-Banna’’s Essays on Arithmetic in Appendix B, problem [1].

Single false position is a method that directly applies the rule of three. One posits
a convenient, but probably incorrect, value for the solution to a problem, then the
answer is calculated from the value and the error via proportion. This method is
not taught in Ibn al-Banna’’s Condensed Book, but it was very common in Arabic
arithmetic. Problems [2] and [ 7] translated in Appendix B are solved by single false
position. The first of these is from Ibn al-Banna’’s Essays on Arithmetic.

* Double false position. Two (false) values are posited for the solution to a problem,
and the correct answer is found from the values and their respective errors. This
method is also based on proportion, and is explained beginning at [198.2 with exam-
ples at [199.1], 200.1, 201.1, 02.3], R03.1], 05.5, R07.6, and Appendix B, problem

» Algebra. In Arabic algebra the powers of the unknown are assigned particular names
corresponding to our Xx, x2, x°, etc. To solve a problem an unknown is assigned one
of these names, or sometimes a combination of them. The conditions of the enun-
ciation are worked out to set up an equation, which is then simplified and solved.
The basic rules of algebra are explained starting at 09.1|, though no sample prob-
lems are provided. Examples worked out by algebra from other books are given in

problems [3] through [7] in Appendix B.

The rule of three was practiced across the Old World in antiquity, from Europe to
China. As mentioned, it is the basis for the method of single false position, which dates
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back at least to a problem solved in the Rhind Papyrus in Egypt, ca. 1650 BC. A version
of single false position is also attested to in cuneiform tablets from the end of the Old
Babylonian period (that is, around 1700-1600 BC), and it appears in Sanskrit sources
before the advent of Islam.*® This method was probably as widespread in antiquity as the
rule of three. It was practiced and taught among merchants and others over the course of
many centuries and over a vast territory before we encounter it in medieval Arabic books.

Double false position also circulated among people who solve problems on the job.
The only evidence we have of its use before the ninth century comes from a few problems
in a single ancient Chinese text, the Nine Chapters on Mathematical Procedures, written
some two thousand years ago.** Contrary to some reports, double false position is absent

from Hero of Alexandria’s approximation of m (ca. 100 CE), nor has it been found in
Babylonian or Sanskrit sources.>® This does not mean that it was not practiced in those
places. We just have no positive evidence that it was.

Because of confusion in many modern accounts, algebra will require a bit more expla-
nation. Algebra in medieval Arabic was called al-jabr wa I-mugabala, literally “restoration
and confrontation”.>! The phrase was often shortened to just al-jabr, and transliterations
into Latin and Italian eventually led to our word “algebra”. But algebra then was quite dif-
ferent from algebra now. Many of the various meanings we impart to the word “algebra”
today are due to modern developments and to the disappearance of other problem-solving
methods. Today, people often apply the words “algebra” and “algebraic” to any kind of
formal, abstract reasoning, or to any technique of finding unknown numbers. Two current
definitions of “algebra” in the Oxford English dictionary support the former view:

2a. As a mass noun: (originally) the branch of mathematics in which letters
are used to represent numbers in formulae and equations; (in later use more
widely) that in which symbols are used to represent quantities, relations, oper-
ations, and other concepts, and operations may be applied only a finite number
of times.

3. In extended use and fig. Something, esp. a system or process, that resembles
algebra in substituting one thing for another, or in using symbols, signs, etc.,
to represent ideas and concepts.>>

Neither of these characterizations apply to Arabic algebra. Letters and other symbols are
only incidentally employed in Maghrebi texts (see below), and in any case they represent
kinds of numbers and not numbers themselves.”>® Further, there is no abstract reasoning
that would take the art beyond arithmetic. These modern views of algebra have muddled
the attempts of some historians to properly identify just what al-jabr wa I-mugabala is,
and to distinguish it from other techniques and modes of reasoning in Arabic and other
premodern mathematics.

By “Arabic algebra” we mean the art of al-jabr wa I-mugabala as it was understood
by those who practiced it. This was a specific technique of numerical problem-solving,

“8For Egypt: (Imhausen 2003, 37, 51); (Gillings 1972, Chapter 14). For Babylonia: (Heyrup 2002, 59-60,
102, 311-313). For Sanskrit: (Hayashi [1995, 396-399).

49(Chemla [1997).

S%(Hoyrup 2002, 103); (Plofker 2002, 182-183); (Plofker 2009, 259).

SIThe uses of these two terms in algebra are described briefly at R11.1, and through examples in the section
beginning at P23.1.

Zhttp://www.oed.com/, accessed August 26, 2018.

33See our commentary at P29.8; for a more thorough explanation, see (Oaks 2017).
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with it own vocabulary and rules. As Ibn al-Banna’ and al-Hawar explain, the powers
of the unknown are given names. The first power of the unknown is called a “thing” or a
“root”, akin to our x. The second power is called a “mal ”, an Arabic word which ordinarily
means “sum of money” or “wealth”, and which corresponds to our x>.>* The cube of the
thing, our x°, is called a “cube”, and higher powers are expressed by combinations of mal
and cube, such as mal mal for the fourth power and mal cube for the fifth.

In most problems solved by al-jabr wa I-mugabala an unknown number is named
“a thing”, though sometimes it is named as one of the other powers or some combination
of them. The conditions of the problem are then applied to set up a polynomial equation
expressed in terms of the names of the powers, and the equation is then simplified and
solved. One important distinction between al-jabr and other methods like single and dou-
ble false position is that, in the latter, operations are performed only on known numbers,
while in algebra calculations can be performed on the names of the powers. In other words,
in algebra one operates on the unknown.

The earliest known Arabic books on algebra are the Book of Algebra by al-
Khwarazmi and the book of the same title by Ibn Turk.>> Both were written in Baghdad
during the reign of the caliph al-Ma’miin, 813-833 CE. Some historians have thought that
because no Arabic book on this topic is known before al-Khwarazm1’s that he must have
invented algebra. This view does not take into account the oral traditions of calculation
before the start of the translation movement. In fact, evidence of oral transmission is
manifest even in al-Khwarazmi’s book.’® Analogously, the earliest known work on
double false position is the Book on Proof of the Method of Double False Position by
Qusta ibn Luga (ca. 820-ca. 912/3).>7 No one would claim that Qusta invented double
false position. He was merely among the first we know to write down a book describing
the method.

With a clear idea that al-jabr must predate the time of al-Khwarazmi, historians have
looked for the technique in the mathematics of previous civilizations. The most prominent
candidates are (a) the Brahma-sputa-siddhanta of Brahmagupta and other works from
India (seventh century CE and later), (b) the Arithmetica of Diophantus of Alexandria (ca.
early fourth century CE), and (c) ancient Babylonian cuneiform tablets (mainly ca. 2000-
1600 BC). The method practiced in India is certainly a kind of algebra — names are given
to unknowns and equations are formed and solved. But because the vocabulary is of an
entirely different nature and the technique is more advanced in some respects than what
we find in Arabic algebra, we can exclude direct influence of this sophisticated Indian
algebra on the latter.”® What is called Babylonian algebra is likewise distant from Arabic
algebra. There the known and unknown quantities are represented by lines and rectangles
and the manipulations take place in the context of a diagram. Although operations can be
performed on the unknown, there is no simplification to a canonical set of equations, so

34There is no good English translation of mal, so we leave it transliterated.

>SRashed’s edition of al-Khwarazmi’s book, with an English translation, is published in (al-Khwarizmi
2009). Only a portion of Ibn Turk’s book survives. It is edited with an English translation in (Sayili [1962).
In his tenth-century Kitab al-Fihrist, Ibn al-Nadim reports a book on algebra by Sanad ibn ‘Alt (#48), a
contemporary of al-Khwarazmt and Ibn Turk. This attribution is probably an error, and the book belongs
instead to al-Khwarazmi. See (Saidan 1987, 439-440).

%For evidence of oral transmission, see (Oaks 2012b); (Saidan 1974, 369); (King [1988).

STKitab al-burhan ‘ald ‘amal hisab al-khata ‘an. Suter published a German translation in (Suter 1908—1909).
We have also consulted the British Library, Oxford, and Cairo manuscripts. Abii Kamil (late ninth century)
is also reported to have written a book on double false position about the same time, but it is not extant.
38Léon Rodet made a detailed analysis of these differences in (Rodet [1878).
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each problem requires its own trick to solve.’® Babylonian algebra, then, seems to be a
precursor to Arabic algebra.

Diophantus’s way of solving problems, on the other hand, matches Arabic algebra
in its vocabulary, overall structure, and concepts. More specifically, they agree in their
systems of naming the powers of the unknown, in their basic procedures of setting up,
simplifying, and solving equations, and in their conceptions of monomials, polynomials
and equations.®® Diophantus wrote in Alexandria in late antiquity. His book was translated
into Arabic in the latter ninth century, after the time of al-Khwarazmi.®' Arabic authors
called the Arithmetica a book on al-jabr wa I-mugabala or al-jabr,®* and many of Dio-
phantus’s problems found their way into Arabic algebra books.

We also know from two passages in Ibn al-Nadim’s Fikhrist that the Greek astronomer
Hipparchus of Bithynia wrote a book on algebra in the second century BC that was also
translated into Arabic.®> This book is unfortunately lost in both languages. Neither Hip-
parchus nor Diophantus can be said to have invented algebra, however. Like al-Khwarazmi
some centuries later, both most likely composed books inspired by the algebra of practi-
tioners that was already circulating orally in their times. The identity and even the nation-
ality of the person or people who first practiced this premodern algebra are lost to history.
There is certainly some historical link between Greek and Arabic algebra, either through
texts, through oral practice among those who performed the calculations in their work, or
both.

1.6 Education, books, and notation

One peculiar feature of medieval mathematics books, at least to modern readers, is their
general lack of notation. Ibn al-Banna’ wrote all numbers in his Condensed Book in words,
even if he was teaching the use of Indian numerals! And al-Hawar1, whose purpose was to
give numerical examples, still writes the numbers and operations in words before showing
the notation. This is perhaps the most glaring of the many differences between medieval
and modern arithmetic books. The causes of these differences have to do largely with how
the material was taught, and more generally with how people in al-Hawari’s time related
to books.

1.6.1 Education in medieval Islam

Where today education is structured around institutions, curricula, and degrees, in me-
dieval Islamicate societies it was structured around individual teachers, books, and li-
censes (ijazar).** Schools did exist and provided support for both teachers and students,
and from what we can gather they often had curricula; but throughout the medieval period
education remained centered on the student-teacher relationship. To learn a topic, a student
chose a teacher (shaykh) with a good reputation to study a particular book. Once the stu-

3(Hoyrup 2002).

60(Christianidis and Oaks 2013).

81The four surviving books of the Arabic translation have been edited and translated twice, in (Sesiano [1982)
and (Diophantus [1984)).

62(Sesiano [1982, 8-13).

83(Ibn al-Nadim [1871-1872, 269, 283); (Ibn al-Nadim [1970, 642, 668). Both references mention Abii 1-
Wafa’’s commentary on Hipparchus’s “book on the art of algebra (a/-jabr)”. In addition, Abti I-Wafa” himself
mentions this commentary in his Book of What is Necessary for Scribes, Businessmen, and Others in the
Science of Arithmetic (Saidan [1971, 126.7).

84For Islamic education, see (Makdisi [1981)), (Berkey [1992), and (Chamberlain [1994).
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dent had learned the book to the satisfaction of the shaykh, he (or rarely, she) received an
ijaza, or license, granting him authority over the text. The ijaza not only certified mastery
of the contents of the book, it gave its possessor authorization to teach it himself. The ijaza
recorded the names in the chain of transmission of that particular text, listing the student,
his teacher, his teacher’s teacher, ideally all the way back to the author of the book.

Instruction was centered around dictation and memorization. The shaykh read the
book to the student, who memorized it and dictated it back to the shaykh. This emphasis on
speaking and listening reflects the notion that books properly reside in the minds of those
who had memorized them, and not in manuscript copies. Students recited aloud even when
studying alone after the lecture, “for what the ear hears becomes firmly established in the
heart”.%> Manuscripts played an essential role in this oral environment. Copying the words
of a teacher on paper aided memorization, and written books gave the student access to
the text when studying alone. But true learning was thought to take place in the presence
of the teacher, who possessed an understanding of the book that manuscripts lacked.

Instruction was not restricted to dictation of the book under study. The shaykh would
often supplement it with examples, illustrative remarks, and material from other sources.
Al-Hawari cites additional procedures for double false position that Ibn al-Banna’ dictated
to him at , and he signals other added material at 163.11 and P32.9. Many other
passages are attributed in the manuscripts to Ibn al-Banna’ that are not in the Condensed
Book, and most likely they were dictated to al-HawarT as well.®® Whatever a textbook
lacked in examples and explanations would have been covered somehow by the shaykh
teaching it.

Many authors wrote their books concisely to make memorization easier, which is
certainly the case for Ibn al-Banna’’s Condensed Book. Some authors even put down
the mathematical ideas in verse, since poetry is easier to memorize than prose. Ibn al-
Yasamin’s famous Poem on Algebra covers the basic rules of algebraic problem-solving
in just 54 lines,%” and Ibn Ghazi reduced the contents of Ibn al-Banna’’s Condensed Book
to 461 verses in his Desire of Reckoners.%® In the other direction, many authors filled their
books with detailed explanations and many worked-out exercises, making them too long
to have been memorized in their entirety. For example, Ibn al-Ha'im’s 1387 Commentary
on the Poem of al-Yasamin amounts to an encyclopedia of algebraic knowledge that takes
up 257 pages in the modern printed edition,®® and Ibn Ghazi himself expounded on his
arithmetical poem to make a commentary that occupies 323 pages of the modern edition.”
Al-Hawar1’s commentary falls into this category, too.

1.6.2 The role of notation

Because of the oral nature of learning in medieval Islam, books read like transcriptions of
lectures.”! Notation serves no purpose to the student listening to a lecture, so there is no
advantage in including it in the running text of a book. This is why Ibn al-Banna" wrote his

85 Abii 1-Hilal al-Hasan al-‘Askari, quoted in (Berkey [1992, 27).

6These passages are shown in SMALL CAPs in the translation.

7published in (Abdeljaouad 2005a). Ibn al-Yasamin also wrote a 55-line poem on root extraction and an
8-line poem on double false position.

%Note also the short poems quoted by al-HawarT describing the shapes of the Indian numerals at 69.2, the
abjad numerals for casting out sevens at 88.14, and ‘Alf ibn al-Maghribi’s Poem on Reckoning with Finger-
Joints mentioned above.

89(Ibn al-Ha’im 2003).

"OThe commentary is titled Aim of the Students in Commentary on Desire of Reckoners (Ibn Ghazi 1983).
71 (Chamberlain 1994); (Berkey [1992).
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book entirely in words, and why the notation for the calculations in al-Hawari’s book only
appear as figures or illustrations. These figures play a role much like geometric diagrams
or other illustrations, and were intended to show the student what is to be put down on
the dust-board or other surface. For example, he begins this calculation in the chapter on
addition, at [75.9:

Suppose we want to add nine hundred seventy-eight to four hundred fifty-six.

We put them down on two lines, as mentioned, as in this figure: 4;2
978
456
with some phrase like “and its figure is” or “so we write it down like this”.

Some Arabic authors included the Indian notation in the spoken parts of their arith-
metic books, but there the numbers were still meant to be recited aloud like the words that
surround them. Nagsir al-Din al-TtsT, for example, begins this problem in his Gathering of
Arithmetic by Means of Board and Dust (thirteenth century):

The visual notation (here /- /) is always set apart from the audible text in al-Hawar1’s book

For example, we want to multiply 123 by 456. We write them in two lines
4 1

like this: 5 2 .
6 3

Here the 123 and 456 are still intended to be spoken, while the same numbers shown in
columns form a figure that was to be apprehended visually, like any illustration.

There were thus two ways of writing arithmetic. To solve a problem, one wrote in
notation on a dust-board or other temporary surface. Then, if one wished to communicate
the result to others, a rhetorical version was composed. For this reason, the numerals tend
to appear in arithmetic books only to show students what is to be put down on the board.

Because board calculations were for personal, immediate use, the notation can toler-
ate ambiguities. For example, the notation for excluded fractions of both connected and
disconnected types were often represented the same way in notation. But this does not
matter, because the person working out the calculation knows which is which while doing
s0 (see our commentary at [140.14). Ambiguity would only be a problem if one wanted to
consult the book later or have others read it. Dust does not permit the former, and for the
latter a rhetorical version in unambiguous prose was composed.

1.6.3 Developments in Indian notation: fractions, roots, and algebra

Arabic practitioners devised notations to extend Indian numerals to show fractions and
roots in arithmetic and polynomials and equations in algebra.”® There are differences in
these notations that can usually be ascribed to geography, mainly between east and west.
The Persian mathematician al-Farisi, a contemporary of Ibn al-Banna’, shows fractions
with the denominator over the numerator, and without the bar. His “three sevenths” is
shown as ;, for example.74 By contrast, al-Kashi, working in Samarkand in eastern Persia

72(Saidan [1967, 125). Some other books that show notation in the spoken parts of the text include al-
Uqlidist’s Chapters on Indian Arithmetic (952/3 CE), Ibn Mun‘im’s Understanding Calculation (12th-13th
c.), and al-Farist’s Foundation of Rules on Elements of Benefits (early 14th c.).

3For algebraic notation, see (Abdeljaouad 2005a) and (Oaks 2012a).

74 (al-Farisi 1994, 199).
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in 1427, put the numerator over the denominator. His “eight and four sevenths” is shown in

8
notation as 471.75 The earliest known book from the Maghreb showing fractions in notation

is al-Hassar’s late twelfth century Book of Demonstration and Recollection in the Art of
Dust Board Reckoning. There, fractions are shown just the way we write them today, with
the numerator over the denominator separated by a horizontal line. Here, for example, is

his 19—1 from a manuscript copied in 1194 CE: .7® Other books from the west, including

al-Hawar1’s commentary, also show fractions this way.
Ibn al-Yasamin’s late twelfth century Grafting of Opinions is the earliest known book
that indicates the square root by placing an elongated letter jim ¢ ) above the affected

numbers, much like the way we use our elastic sign “\/_ . This notation became com-
mon in the Islamic West, though al-Hawar1 does not show it. We have not (yet) seen a
notation for roots in Arabic books written east of Egypt.

Initially, there seems to have been no notation specific to Arabic algebra. The little
evidence we have indicates that polynomials were written on a board as a list of coeffi-
cients. In the early eleventh century, al-Karaji, working in Baghdad, wrote out in words
the polynomial that we would express as x'2 + 4x'! + 10x!0 + 20x° + 35x% + 56x7 +
84x5 + 104x° + 115x* + 116x> + 106x? + 84x + 49, and then wrote “you put it down
in this figure: 14 1020 35 56 84 104 115 116 106 84 49”.77 A century and a half later
al-Samaw’al, working in Persia, shows polynomials in his Dazzling [Book] on the Science
of Calculation the same way, but with the names of the powers written in words above
the Indian numerals for each coefficient to keep straight which number goes with which
power.”8 The large majority of problems solved by algebra do not require anything higher
than the second power, so when working out a problem on a board there was little need to
indicate the name of the power when working through the calculations. We have found one

Western manuscript that shows an equation in the margin in Eastern notat1on
We can transcribe this as “1 2 = 99”, and in modern notation we write it as x> +2x = 99. 7
Later, in the western part of the Islamic world, a notation came into common use
in which the first letter of the name of the power was placed above the coefficient. Our
earliest glimpses are two brief figures in Ibn al-Yasamin’s late twelfth century Grafting
of Opinions.®® Most authors working in the Maghreb or al-Andalus in the fourteenth and
fifteenth centuries also show it, while some in the region, Ibn al-Banna’ and al-Hawari
included, do not. Like the Indian notation, it is only presented to instruct students on how
to write it to perform calculations on a board. In almost every instance, we are treated to
a single expression or equation in notation here and there during the course of a rhetorical
explanation or solution to a problem. We are fortunate, then, that in one place Ibn Ghazi
shows an entire problem worked out using this algebraic notation in nearly a dozen lines
in his 1483 Aim of the Students.®' Incidentally, it is on that page in the Library of Congress
manuscript that the Eastern equation shown above appears. The Western version is written

like this: . Algebraic notation is neither mentioned nor shown in more

73(al-Kashi [1969, 89). Al-Baghdadi writes fractions the same way (al-Baghdadi 1985, 102ff).

76(al-Hassar manuscript, fol. 43b).

77(al-Karaji 1964, 52). The same polynomial is written similarly by al-Samaw’al (al-Samaw’al 1972, 67).
78(al-Samaw’al 1972, 45ff). Here al-Samaw’al is performing operations on the coefficients in tables.
7(Ibn Ghazi manuscript, fol. 108b). It appears that the Eastern marginal annotator felt the need to clarify
the final calculations shown in the manuscript, which were written sloppily in Western notation.
80(Zemouli [1993, 137, 231).

81(Ibn Ghazi 1983, 302); (Ibn Ghazi manuscript, fol. 108b); (Oaks 2012a, 62).



32 1. Introduction

advanced books on algebra, like Ibn al-Ha'im’s Commentary mentioned above. Because
it is better suited to represent medieval algebraic calculations than modern notation, we
describe the Arabic notation in our commentary beginning at and further at 219.1],
and we use it to explain al-Hawar1’s calculations.

1.6.4 Nesselmann’s stages revisited

Addressing Nesselmann will help some readers apprehend better the algebra in al-
Hawart’s book, and indeed Arabic algebra in general. To make sense of the historical
development of algebra, the German orientalist G.H.F. Nesselmann devised a three-stage
scheme that he described in his 1842 book Versuch Kritischen Geschichte der Algebra
(Critical Essay on the History of Algebra).3? He dubs the most primitive stage “rhetorical
algebra”, in which all calculations are written verbally. Next is “syncopated algebra”,
which was still essentially rhetorical but with some recurring abbreviations. The third
stage is “symbolic algebra”, where calculations are represented in a language independent
of oral presentation. Nesselmann identified Arabic algebra, quoting al-Khwarazmi
in particular, as belonging to “rhetorical algebra”, and Diophantus’s Arithmetica as
belonging to “syncopated algebra”.

Although historians of mathematics in the past few decades have moved beyond Nes-
selmann’s classification,®® it is still frequently cited in popular accounts of the history of
mathematics and in studies in mathematics education. Unfortunately, it is misleading as
a scheme for describing historical developments in algebra or for identifying conceptual
shifts. Nesselmann was unaware of board calculations when he classified Arabic algebra
as “rhetorical”. Although the algebraic calculations we find in the books of al-Khwarazmf,
al-Khayyam, and others fall into his “rhetorical” category, the same work on a dust-board
or wax tablet in the Arabic notation would be safely classified as “symbolic”” according to
his definition.®* The mode of presentation is thus not an indication of a stage in algebraic
development. Diophantus’s instructions for abbreviating algebraic vocabulary read much
like the instructions for writing algebra in notation in the later Arabic books. His abbrevi-
ations were probably used when working through the calculations on a wax tablet, so in
this respect it is no different from the later Arabic practice. In manuscripts of the Arith-
metica the abbreviations were evidently intended to be expanded and pronounced, like the
numbers in Nasir al-Din al-TiisT’s arithmetic book quoted above. And finally, Nesselmann
did not notice the difference between premodern and modern algebraic notations, where
the letters or signs in the former designate types, and in the latter designate values.®

1.6.5 The figures in al-Hawar1’s book

One consequence of the distinction between visual figure and audible text is that in Eu-
ropean languages we read numbers expressed with Indian numerals backwards. Arabic is
written right-to-left, so when reading a number like “214” in that language one starts from
the 4 in the units place. When Europeans translated Arabic texts on arithmetic into Latin
in the Middle Ages they preserved the orientation of figures. This is why “214” did not

82(Nesselmann [1842, 301ff).

8 Albrecht Heeffer, in particular, has recently criticized Nesselmann (Heeffer 2009).

8Ibn Ghazi’s page showing an entire problem worked out in notation is the one example we have of what
must have been commonly written on a board. See (Oaks 2012a, 62).

$5See (Oaks 2017) for an explanation of this difference. We also discuss it briefly in our commentary at 229.8.
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become “412”. Because European languages are written left-to-right, we read the number
214 starting from 2 in the hundreds place.
Like the Latin translators, we have preserved the orientation of the Arabic figures in

our translation. We could not reverse figures showing numbers horizontally, like ;lggg (at

[74.17), or else the “four thousand forty-three” would look like 3404. It would not make
sense to reverse some figures and not others, so we kept the orientation of all figures as
they appear in the manuscripts. Keep in mind when reading the translation that figures
would have been viewed right to left.

Although copyists of al-Hawar1’s book transcribed his words more or less faithfully,
the same cannot be said for the figures. For example, the figure we typeset for the passage
after [103.3 is shown below, followed by the figures from the Tehran, Oxford, and Tunis
manuscripts.

7 1|3
4 0 4 2|8
315860 1|1
39841
6 3 2
Translation Tehran fol. 23b Oxford fol. 126a Tunis fol. 10a

Figure 7: Comparing figures in the manuscripts

We deem our translation to be correct because it agrees with the verbal descrip-
tion of the operations in the text. Of the five manuscripts we consulted, only the Tehran
manuscript shows this figure correctly. The Oxford and Medina manuscripts leave off the
last round of calculations, and although not incorrect, the Oxford manuscript is the only
one that crosses off numbers. Most of the numbers in the Tunis manuscript are wrong,
and in the Istanbul manuscript (not shown here) the numbers between the lines are shifted
up one row. All five manuscripts, including the Tehran manuscript, have errors in many
figures, and it is rare to find a mistake that is common to all manuscripts. In our translation
we show figures in the style found in the manuscripts which agree with the calculations
described in the text.

1.7 The legacies of the Condensed Book and al-Hawar1’s commentary

The popularity of Ibn al-Banna’’s Condensed Book is evident in the number of commen-
taries, poems, and abridgments it inspired. After his own Lifting the Veil and al-Hawar1’s
Essential Commentary, we know of ten people who wrote commentaries on the Condensed
Book between the fourteenth and sixteenth centuries.®¢ In the other direction, Ibn al-Ha’im

8 Al-Ghurbi (M 158, 2nd half 14th c.), al-Mawahidi (M176, ca. 1382), Ibn Zakariyya (A336, #793, died
1403-4), Ibn Qunfudh (died 1407-8), al-‘Ugbant (died 1408), Ibn Haydar (M196, died 1413), Ibn Majdi
(#815, died 1447), al-Habbak (M219, #831, died 1463), al-Qalasadrt (died 1486), and Muhammad al-Ghazzi
(#998, 16th c.).
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(ca. 1400) wrote an even more condensed version of Ibn al-Banna’’s little book, and four
authors, including Ibn Ghazi (15th c.), set the contents of the Condensed Book to verse.?’

Although by no means as well known as his professor’s Condensed Book, the number
of surviving manuscripts of al-Hawart’s Essential Commentary is testimony to its popular-
ity across several centuries. We have found four later works that reference or copy from
al-Hawari. ‘Izz al-Din al-Hanbal1 (d. 1409) copied many numerical examples from al-
Hawart’s book into his own commentary on Ibn al-Banna’’s Condensed Book, but with-
out citing his source. Later, Ibn Ghazi likewise copied many numerical examples into
his Aim of the Students (1483). He mentions al-Hawari by name twice, though not in
connection with his copying. Sibt al-Maridin1’s (1423-1506) Student'’s Guide to the Way
of Arithmetic paraphrases al-Hawari’s remarks on the ontology of ratios (at [133.3), and
cites the source.®® And while still a student in the 1740s in Istanbul, future mathematics
teacher Seker Zade put together a notebook titled Examples from Ibn al-Banna’s Con-
densed [Book] and Ibn al-Ha'im's Contents [of Calculation] 3° Seker Zade copied over
a hundred numerical examples from al-Hawari’s commentary, always citing his source.
This notebook is remarkable because the problems are all worked out in the Arabic no-
tation, showing what would have been put down on the dust-board. And finally, a two-
page extract from al-Hawar1’s book, consisting of the subsection “on finding deaf parts”
(127.9-128.16)), appears in the middle of MS Berlin Landberg 199, on folios 31b-32a. This
manuscript contains several works on arithmetic and algebra by other authors, including
Ibn Fallts (d. 1239) and al-Khwarazmi. Neither al-Hawar1’s name nor the title of his book
are given on those two pages.

We last hear of al-Hawar1 in 1875, in connection with the proposed mathematics
curriculum for the Zaytiina mosque school in Tunis. Until then, mathematics instruction
at the mosque had been limited to five stylistic commentaries of a poem on inheritance
and arithmetic. In an attempt to modernize instruction, Prime Minister Hayreddin Pasha
oversaw the creation of an entirely new curriculum made public on December 25, 1875.
Although a great improvement over the dismal curriculum in place at the time, the ten
recommended texts on mathematics were themselves already hopelessly out of date. They
included al-Hawari’s Essential Commentary in the upper division, even though it was
already over 500 years old! The proposed curriculum received harsh resistance from the
ulama, the religious authorities, and it was likely never implemented.

87The others are Ibn Marziiq (M205, died 1438), al-Wansharisi (M257, died 1548-9), and Ibn al-Qadi (M315,
died 1616).

88 (Sibt al-Maridini 2004, 145).

% (Abdeljaouad 2011)); (Abdeljaouad and Oaks 2013)). Ibn al-Ha’im’s Contents of Calculation is his abridg-
ment of the Condensed Book mentioned above. Incidentally, Seker Zade’s figure for the passage after [103.3]
is shown correctly.



