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Chapter 4
Epistemology

One of the most challenging aspects of Benedetti’s endeavor was his attempt to merge
mathematical and physical speculations, as is clearly stated in the title of the Diversae
speculationes mathematicae et physicae. In order to understand his way to “physico-
mathematics,” we will discuss his mathematical epistemology starting from some
statements scattered in his major work and then look at the premises implicit in his
treatment of nature. We will briefly review the Renaissance reflections on mathematics
linked to practical developments in technological fields as well as to eclectic reassess-
ments of Pythagorean and Aristotelian debates on the certainty of mathematics and their
applicability to natural philosophy. Focusing on the epistemological premises underlying
Benedetti’s mechanics, we will discuss medieval and early modern approaches to
natural knowledge, which, in spite of their mathematical rigor, rested on a physics and
metaphysics of contingency. For many centuries, it was assumed that the mathematical
regularity of the phenomena does not imply their causal necessity.

4.1 The Certainty of Mathematics

In the letter to the Venetian patrician Domenico Pisani included in the collection of the
Diversae speculationes and entitled De philosophia mathematica (On Mathematical Phi-
losophy), Benedetti emphasized the philosophical dignity of his discipline, placing it at
the same rank as physics, metaphysics, and ethics—if not higher than them, considering
the certainty of its demonstrations (certitudo suarum conclusionum):

I am surprised that, although you are well-versed in Aristotelian philosophy,
nonetheless you make a distinction between the philosopher and the mathe-
matician in your writings, as if the mathematician were not as much a philoso-
pher as the naturalist and the metaphysician. In fact, as far as the certainty of
his conclusions is concerned, he deserves the title of philosopher much more
than them.1

This reference to mathematical conclusiones reveals Benedetti’s methodological focus on
the dignity and validity of his discipline. In his connection of mathematical and physical
speculations, he seems to put the emphasis on the method rather than on ontology and
to seek for the certainty of mathematics and its applications by way of its specific logic.
This was the position of his correspondent, the Paduan professor Pietro Catena.2 Along
with him, Benedetti maintained that the certainty of mathematics has an extra-sensible and
intelligible character.3 As Benedetti added in his letter to Pisani:
1Benedetti 1585, 298: “Miror quod cum in Aristotele sis versatus, in tuis tamen scriptis philosophum a
Mathematico separes, quasi mathematicus non sit adeo philosophus, ut est naturalis, et metaphysicus, cum
multo magis quam ii philosophus sit appellandus, si ad veritatem suarum conclusionum respiciamus.”
2Benedetti includes a letter to Catena in Benedetti 1585, 371.
3See on this De Pace 1993, 228–229.
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Actually, you are not the only one who makes this mistake, but this is more
grave in consideration of the fact that, although you [Aristotelians] even label
ethics as a philosophical discipline, you do not acknowledge that the divine
mathematical sciences also should be adorned with the name of philosophy.
In fact, if we consider this name more attentively we will clearly see that it
is in itself more suited to the mathematician than to anyone else, since none
of the others is more certain in his affirmations than the mathematician. And
no one is more driven by the love of science in his cognition. This is evi-
dent. In fact, [the mathematician] does not rely on the senses nor accepts any
presupposition that is not so true and evident to the intellect that no power
whatsoever could show that it is false.4

Benedetti was acquainted with scholars quarreling over the status of mathematics, its
demonstrative methods, and its legitimacy in the treatment of natural issues.

In his time such debates on the foundations and status of mathematics were intense.
As an instance of epistemological reflections on the philosophy of mathematics, historians
often mention the controversial theses by the Paduan professor of philosophy Alessan-
dro Piccolomini, with whose work Benedetti was familiar. Piccolomini authored, among
other writings, a treatise De certitudine mathematicarum (On the Certainty of Mathemat-
ics, 1547) affixed to his paraphrases of pseudo-Aristotelian mechanics, In mechanicas
questions Aristotelis paraphrasis. As one reads in this sort of appendix, one ought not to
cast into doubt the certainty of mathematics. However, this does not depend on demon-
strative methods but rather on the subject of inquiry: “Mathematical disciplines are certain
not due to the force of their demonstrations but rather to their subject matter itself.”5 Their
special subject is quantity, connected to matter. Hence, the certainty of mathematics, for
an Aristotelian such as Piccolomini, rests on the fact that it deals with universal prop-
erties of nature that can be extracted from concrete reality by means of abstraction (res
mathematicae sunt ex abstractione).

The cause of the certainty of mathematics is evident from Aristotle’s state-
ments. Simplicius is of the same opinion when he states (in De anima I 11)
that the cause of the certainty of mathematics is due to the fact that they refer
to quantity. In fact, as he argues, quantities are sensible things, they have
sensible causes and they are known to us as such.6

This consideration led Piccolomini to argue thatmotion can become amathematical object,
if one abstracts from materiality:
4Benedetti 1585, 298: “Verum quidem est, te in huiusmodi errore solum non versari; sed gravius est, quod
cum vos videatis etiam resmorales sub philosophiae appellationem cadere, non animadvertatis divinas scien-
tias mathematicas etiam philosophiae nomine ornandas esse. Quod si eiusdem nomen penitius considerare
velimus, inveniemus aperte, mathematico magis illud ipsum quam cuilibet alio convenire, cum nullus ex
aliis tam certo sciat id quem affirmat quam mathematicus, neque aliquis sit, qui in cognitionis, et scientiae
cupiditatem magis ducantur, ut aperte patet, cum nec etiam ipsi sensui det locum, neque aliquid praesup-
ponat, quem non sit ita verum et intellectui notum, ut nulla quaevis potentia, illud esse falsum ostendere
queat.”
5Piccolomini 1565, f. 107v: “Mathematics disciplines esse certas non vi demonstrationis, sed ex subjecti
ipsius ratione.”
6Piccolomini 1565, 106v: “Patet igitur ex dictis Aristotelis causa certitudinis mathematicae. Hoc idem
sensit Simplicius, qui primo de Anima 11. dicit causam certitudinis mathematicarum esse, quia versantur
circa quantum. Quantitates enim ut dicit ipse, sunt res sensatae, et causas sensatas habent, et ideo nobis
notas.”
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One could argue that, just like magnitude, motion is a common sensible, too.
Moreover, it has its effects and causes (see PhysicsV and VI). Thus, there can
be a science of motion (a natural one), which is certain, similar to the science
of quantity, that is, mathematics.

We can answer to this [apparent objection], that if we consider motion in
general, as separated from matter and insofar as it is a continuum […], our
consideration will be mathematical. This is not in contrast with our princi-
ples.7

The “ontological” and not only “epistemological” dimension of mathematical physics
would concern later scholars such as Kepler and Galileo, going beyond the shared Aris-
totelian discourse in their investigations of the mathematical properties of material pro-
cesses.8 Benedetti was rather concerned with mathematics as an intellectual tool, a sort
of “logic of scientific inquiry.” In the above-mentioned letter to Pisani on his mathemati-
cal philosophy, he stressed the certainty of mathematical reasoning rather than that of its
“objects.” Nonetheless, he was interested in the question raised by Piccolomini as to the
usefulness of mathematics in the study of motion. As we will discuss, Benedetti’s insight
concerning the generalization of the methods already in use in mechanics, in the science
of weights, established the premises for the conceptualization of problems in dynamics.

Benedetti’s interest in mathematics as a conceptual instrument accords with the in-
terest in the demonstrative power of mathematics shown by many scholars entering the
debates about mathematical certainty. The publication of Piccolomini’s De certitudine
mathematicarum led to a series of negative or sympathetic reactions, among them the crit-
icism made by the translator of Proclus’s Commentary on Euclid, Francesco Barozzi, as
well as those by the Paduan professors Pietro Catena and GiuseppeMoletti. Barozzi, in his
1560Quaestio de certitude mathematicarum, and Catena, in his 1563Oratio pro idea me-
thodi, argued in favor of the demonstrative certainty of mathematics, contra Piccolomini’s
exclusive focus on mathematical objects. The theoretical discussion regarding the status
of mathematics, the certainty of its demonstrations, their applicability to the investigation
of nature, and the hierarchy between natural philosophy and mathematics continued for
a while. It also produced frictions among Jesuit scholars such as the philosopher Benito
Pereira and the mathematician Clavius, who were inclined to assign different levels of
importance to the study and teaching of mathematics in the colleges of their order.9

As far as the institutional side of the defence of mathematics is concerned, it op-
posed scholars and intellectuals benefiting from varying social status, such as mathemati-
cians, philosophers, and theologians. Benedetti’s self-perception and, later, Galileo’s self-
presentation as “philosophers” involved polemical stances. They claimed for their math-
7Piccolomini 1565, 107r: “Si vero adhuc replicaretur, quod motus etiam est sensibile quoddam commune,
sicut magnitudo; habet autem motus suas passionet, et suas causas, ut patet 5. et 6. Phys. ergo ita erit certa
de motu scientia, naturalis scilicet, sicut scientia de quantitate, quae Mathematica est. Ad hoc respondere
possumus, quod si motum consyderabimus, in communi, abstractu a materia quatenus continuum quoddam
est, […] tunc consyderatio erit mathematica, et nihil contra nos.”
8As Ofer Gal and Raz Chen-Morris recently stressed: “It is not epistemology that worries the two court
mathematicians here, but ontology. Neither of them questions the power of mathematics to provide the
knowledge they seek; it is the objects that mathematics can be true about that they both feel forced to
establish.” See Gal and Chen-Morris 2013, 118–119.
9The literature on the Renaissance debates on the philosophical status of mathematics is wide. Among
other sources, see Giacobbe 1972, Giacobbe 1973, Carugo 1983, Jardine 1990, 693–697, De Pace 1993,
Cozzoli 2007, and Axworthy 2016, chap. 2. For the Jesuit debates on mathematics, see Romano 1999. For
the seventeenth century, cf. Mancosu 1996, 8–33.
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ematical and physical investigations a wide cultural meaning against critics who down-
played such investigations as merely technical and specialistic.

Early polemics over the viability of the mos geometricus were not purely intellectual
and academic but were also rooted in the rising recognition of the practical import of math-
ematics in engineering, architecture, mechanics, and warfare. A new class of intellectuals
was emerging composed of “scientist-engineers,” so to speak, both expert in practical
disciplines and trained in letters.10 Edgar Zilsel already remarked that the Renaissance
exaltation of mathematics went far beyond purely Platonic and Pythagorean influences.
At that time new mathematical writings were composed and published dealing with the
practical problems of commerce, topography, architecture, and the arts.11 Moreover, the
emergence of mathematical and natural conceptions dependent on the advance of tech-
nology was reinforced by the growing self-consciousness of new social groups.12 As an
example of the awareness of the status of the practical arts one could mention Filippo Pi-
gafetta’s introduction to the Italian edition of Del Monte’s work on mechanics. Here he
reversed the assessment of craftsmen and practical knowledge, which had been marked
by the contempt of aristocrats and traditional intellectuals, as follows:

‘Mechanic’ is a very honored title. According to Plutarch it refers to a pro-
fession linked with warfare. It is suited to a man of high rank who is also
capable of using his hands and his intelligence to realize wonderful works of
rare usefulness and pleasure for human life.13

This judgment well expresses the shifting opinion on practical knowledge which also
marked Benedetti’s environment. We have already stressed the centrality of practical
mathematics for the Savoy dukes, in particular Emanuele Filiberto, in their construction
of the new capital, Turin.

4.2 Physico-Mathematics

As a direct consequence of this mathematizing epistemology Benedetti dismissed the well-
established separation between physics and mathematics in cosmology, that is, he refused
to separate the investigation of “causes” and calculation.14 This anti-fictionalist perspec-
tive implied a realist commitment related to the Copernican system and its embedding
within a renewed cosmology. As we will discuss in the section on Benedetti’s views on
the universe, he praised the system “of Aristarchus and Copernicus” as it avoided the
absurdities of an anthropocentric conception according to which the immensity of the fir-
mament was created only for us. Rather, all planets are like Earth or, better, like moons
reflecting the solar light. Among the direct consequences of the Copernican view was
accepting that the fixed stars do not rotate around the center of the world within one day;
rather, they are immobile.15

10See Valleriani 2010 and Valleriani 2013.
11Zilsel 1942.
12See Lefèvre 1978.
13Pigafetta in Del Monte 1581, Ai lettori: “Mechanico è vocabolo honoratissimo, dimostrante, secondo
Plutarco, mestiero alla Militia pertinente, et convenevole ad huomo di alto affare, et che sappia con le sue
mani et co’l senno mandare ad esecutione opre maravigliose a singulare utilità et diletto del vivere humano.”
14Hypotheses on conventionalism already emerged from the debate on the conflict between Ptolemy’s ge-
ometrical models and Aristotle’s homocentric cosmology. See Di Bono 1990 and Granada and Tessicini
2005.
15Most of these cosmological views are discussed in Benedetti 1585, Book 4. We deal with the details in
chapter 6 as well as, partly, in chapter 7.
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From this viewpoint, Benedetti’s understanding of mathematics is not too removed
from that of a mathematician such as Copernicus, who, in Book 1 of De revolutionibus,
indicated that the mathematical superiority (simplicity and intelligibility) of his own plan-
etary system was such that natural philosophy had to be subordinated to mathematical
astronomy and not vice versa. The theologian who wrote the anonymous introduction
to Copernicus’s work, Andreas Osiander, tried to reaffirm the hypothetical character of
mathematical astronomy, and its subordinate position as a discipline relative to physics
and theology. By contrast, Renaissance scholars who appreciated the physical meaning
of the Copernican system called it “Pythagorean” to underscore at once its natural philo-
sophical and mathematical character.16 As an extreme case one could mention Bruno’s
declarations during his Inquisition trial. In order to defend his cosmological views, and in
particular the motion of Earth, he did not mention Copernicus but the ancient philosoph-
ical school of Pythagoras: “I affirmed [the existence of] infinite individual worlds [i.e.,
planetary systems] similar to that of the Earth. Following Pythagoras, I regard the latter
as a celestial body. The Moon is similar to it, as well as other planets and stars, which are
infinite [in number].”17 Pythagorean cosmology was regarded with suspicion by the In-
quisitors and the doctrine of the plurality of worlds became one of the allegations against
Bruno, who would be eventually executed as a heretic in Rome. In the same years in
which Bruno was a prisoner of the Holy Office in Rome and his works were examined for
censure, the censors also attacked Patrizi for his natural views, including the doctrine of
terrestrial motion. Although Benedetti shared similar views about the plurality of worlds
and the possibility of terrestrial motion, he did not incur any censure. We dare say that
he was one of the last Renaissance authors who could freely speculate on nature in Italy
before natural philosophy became a highly ideological issue in the religious repression
escalating in the 1590s.

Benefiting from his subalpine freedom, Benedetti reflected on Pythagorean cosmol-
ogy in a section entitled Pythagoreorum opinionem de sonitu corporum coelestium non
fuisse ab Aristotele sublatam, where he excluded the possibility that the “sound of celes-
tial bodies” is the production of any physical sounds. Rather, he identified the Pythagorean
doctrine of the world harmony with divine providence:

As to motions, dimensions, distances, and influences there is nothing that cor-
responds to such proportions, but, since all of them depend upon the infinite
Divine Providence of God, these velocities, those dimensions, distances, and
influences must have the most perfect order and relations among them and
relative to the universe.18

According to Benedetti’s outlook, the harmony of the heavens does not correspond one
to one to musical harmony in the strict sense. From this viewpoint, Kepler’s later effort
to translate heavenly geometries into musical melodies in the Harmonices mundi libri V
(1619) can be seen as a radicalization of similar “Pythagorean premises.”

Most significantly, Benedetti and Kepler shared a commitment in favor of the fusion
of mathematical and physical accounts of nature in the frame of an early modern transfor-
16Omodeo 2014a, 167–170.
17Bruno 2000b, doc. 13, 67: “Ho dechiarato infiniti mondi particulari simili a questo della Terra; la quale
con Pittagora intendo uno astro, simile alla quale è la Luna, altri pianeti et altre stelle, le qual sono infinite.”
18Benedetti 1585, 191: “Quod autem attinet ad motus, ad magnitudines, ad distantias et ad influxus, nihil
est, quod hisce proportionibus conveniat, sed quia haec omnia dependent ab infinita et divina providentia
Dei, necessario sit ut istae velocitates, eae magnitudines, distantiae et influxus, talem ordinem et respectum
inter se ipsa et universo habeant, qualis perfectissimus sit.”
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mation of natural science in which the methods of the physico-mathematical disciplines
gained a paradigmatic status. The epistemological shift also involved well-established
disciplines such as astronomy. Kepler’s astrophysics, first illustrated in the Astronomia
nova (1609), was a significant step toward the derivation of celestial geometries from
physical forces. Kepler translated a geometrical discipline (Ptolemaic and Copernican
mathematical astronomy) into a physico-mathematical one. In fact, he explained the el-
liptical path of planetary orbits as the effect of interactions of forces. He emphasized the
double bound of his astronomy, inseparably intertwining physics and mathematics, in the
title of the work: Astronomia nova αἰτιολογιτός seu physica coelestis de motibus stellae
Martis (New Astronomy Investigating the Causes, or Celestial Physics Concerning the
Motions of Mars). As Kepler announced in the introduction: “In this work I mixed celes-
tial physics with astronomy.”19 He meant to launch a new discipline, “celestial physics,”
that merged mathematical modeling with causal physics.20 Kepler remarked that the ig-
norance of physical causes compels scholars to settle for conjectures since no choice can
be made between mathematically equivalent hypotheses. By contrast, physical arguments
are decisive in deciding between mathematically equivalent models. Therefore, celestial
physics and astronomy should be unified. The result was a mixed science (scientia mixta)
whose data came from the senses and whose demonstrations are expressed in mathemati-
cal terms. This physicalization is well shown in Kepler’s physico-mathematical concept of
“orbit” (orbitae) substituting that of orbs (orbes) (that is, the material spheres transporting
celestial bodies). According to him orbit is “the path together with its physical causes—
expressed as physical laws.”21 Shape and velocity of astronomical orbits depend on the
force (vis) emanating from the sun, that is, on a physical cause of geometrical effects.22

Descartes’s Traité du monde et de la lumière (completed in 1632–1633, but printed
posthumously, in 1664) and the Principia philosophiae (1644) marked a culminating point
in the move toward the reduction of natural disciplines (such as optics and astronomy but
also physiology) to material interactions of corpuscles in motion. Descartes’s philosophy
was particularly influential as it legitimized a mathematical treatment of nature with the
advances of physics in his time. At the same time, he connected his explanations to views
on matter and causality irreconcilable with the qualitative, essentialist, and teleological
accounts of the Scholastic tradition. In particular, his mechanization elevated the results
of Renaissance mechanics to a higher and more generalized level.

Benedetti’s place is rather at the beginning than at the end of this process. As the
title of his major work hints, he was committed to a mathematical-physical investigation
of nature. He did not limit his application of a mathematical method to those fields where
this approach was already established, but extended it to the treatment of all realms of
natural inquiry.

4.3 The Contingency of Nature and Mechanics

Benedetti’s mathematical approach to nature did not lead him to the belief that physical
phenomena are ruled by necessity. Rather, he shared a medieval and early-modern ontol-
ogy and epistemology of contingency enabling a particular cohabitation of mathematized
physics and indeterminism (in other words, formal determination without causal neces-

19Kepler 1937–2001, vol. 3, 19.
20Gingerich 1975, 261–278.
21Goldstein and Hon 2005, 76.
22On Kepler’s discovery, see Donahue 1988, Donahue 1993 and Wilson 1968.
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sity). In order to better understand it one has to look at Scholastic motives informing
his physics, in particular his mechanics, and the scientific and philosophical work of his
successors. This will require a short excursus.23

4.3.1 Scholastic Treatments of Nature as the Realm of Contingency

It would be misguided to think that a mathematical approach to nature in Renaissance sci-
ence implies the assumption that natural causation is ruled by necessity. This was indeed
not the case for well-established medieval and Renaissance views. Only in the course of
the seventeenth century would contingency be banned from the realm of natural causa-
tion in the developments of post-Cartesian mechanism. For philosophers such as Baruch
Spinoza and Gottfried Wilhelm Leibniz contingency marked the limitations of our knowl-
edge and not an ontological limitation of nature. As one reads for instance in Spinoza’s
Ethica ordine geometrico demonstrata (Ethics, demonstrated in geometrical order) I 29:
“There is no contingency in nature. All natural beings are determined by divine necessity
to exist and operate in a special manner.” (In rerum natura nullum datur contingens, sed
omnia ex necessitate divinae naturae determinata sunt ad certo modo existendum et ope-
randum). By contrast, in the Renaissance a mathematical treatment of natural phenomena
underlaid no principle of sufficient reason, hence it did not imply the necessity of natural
causation. In particular, mixed mathematical disciplines that had received a Scholastic
embedment or systematization rested on a well-established Aristotelian conception, ac-
cording to which sublunary phenomena are determined without necessity.

Historically, contingentia is the Latin variant translation of the Aristotelian concept
of “possibility,” both as modal logical endechomenon as well as physical-metaphysical
dynamis within a hylemorphic framework. In the context of the Christian reception, this
terminus received an onto-theological connotation in a frame of creationist theology. In
late Scholasticism, contingentia came to signify the worldly reality, or nature as Creation.
Nature was deemed to be contingent. It exists de facto but could also not exist because it
depends on God’s will. As John Duns Scotus put it,

So then, the first issue has become clear: how there is contingency in things—
because it comes from God—and what is in God which is the cause of this
contingency—because it is his will.24

In Aristotle, there was a tension between two meanings of “possibility.” According to
Analytica Priora (13: 32 a 18–20) the possible is that which is “neither necessary nor
impossible,” whereas according to De interpretatione (13: 22 a 14–13 a 26) possibility is
exclusively that which is opposed to “impossibility” and therefore includes also that which
is necessary. As a reminiscence of this original tension, one can find in Scholastic phi-
losophy two different definitions of contingency either as “quod est nec impossibile nec
necessarium” (that which is neither impossible nor necessary) or “quod non est impossi-
bile” (that which is not impossible).25 Both meanings were kept in the Latin rendering
of the Aristotelian possibility as contingentia by Gaius Marius Victorinus (III–IV cent.
23We have first discussed contingency and mechanics in the Renaissance in Omodeo and Renn 2015. A vol-
ume entirely devoted to ontological and epistemological contingency in the natural debates of early moder-
nity is Omodeo and Garau 2019.
24Duns Scotus 1994, 140: “Sic igitur apparet primum, quomodo est contingentia in rebus, quia a Deo, – et
quid est in Deo quod est causa huius contingentiae, quia voluntas eius.”
25Cf. Vogt 2011, 52. The entire first chapter is relevant for a historical overview of the reception and trans-
formation of the Aristotelian concept of “possibility” as “contingency” in the Latin tradition.
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CE) and Boethius (IV–V cent. CE), but the Latin expression also suggested affinity be-
tween that which is contingent (contingit) and that which occurs (evenit or accidit).26 This
third connotation would eventually prevail through the late-Scholastic differentiation be-
tween contingentia and possibilitas and its reception in the philosophical systems of the
seventeenth century (and most notably by Leibniz).27 Unlike abstract (purely logical) pos-
sibility, contingency referred only to that which is real but not so by necessity: “id, quod
[est sed] potest non esse” (that which [is but] could not be). In the Christian perspective
of the Almighty’s Creation, contingency happened to include all that is not God himself,
that is to say, nature, or the universe.

This background is fundamental to understand not only theological disputes but also
natural philosophical and scientific developments during the Middle Ages and the Early
Modern Period. The connotation of nature as contingent—as that “which could not be”—
is theological and metaphysical in its essence, since it points to the dependency of the
world on God. However, from the point of view of natural conceptualizations, not only
the “vertical” dimension of metaphysics is relevant but also the “horizontal” dimension
of causality within nature. On the horizontal plane of the interrelation among finite be-
ings, contingency refers to a degree of indetermination, and a certain unpredictability in
the connection between causes and effects. Moreover, whereas a theological perspective
focuses on the radical contingency of that which exists as created being, natural philoso-
phy addresses the relationship between contingency and necessity within nature, that is,
between divine order and phenomenal imperfection. This relationship between that which
is not necessary and that which is necessary had to be conceptualized and indeed was con-
ceptualized as the relationship between the absolutum and the conditionale or secundum
quid.

In Book 1 of the Summa contra gentiles, Thomas Aquinas defined contingency
through its distinction from necessity. In the case of the contingent beings, as one reads
in Summa contra gentiles I 67, a cause can produce its effect or not, whereas in the case
of necessary beings, their cause cannot not produce them:

The contingent differs from the necessary according to the way each of them
is found in its cause. The contingent is in its cause in such a way that it can
both not-be and be from it; but the necessary can only be from its cause. […]
Just as from a necessary cause an effect follows with certitude, so it follows
from a complete contingent cause if it be not impeded.28

A contingent cause, as one reads, will fulfill its tendency to produce a certain effect “si
non impediatur,” that is, if no impediment hinders its realization.

In Book 2 of the Summa contra gentiles, Thomas dealt extensively with the con-
tingent being (“omne quod est possibile esse et non esse” and “[id quod] ad utrumlibet
se habet”).29 According to him, the world is contingent insofar as it is created. In this
general sense, “God is to all things the cause of being” (Summa contra gentiles II 15).30

26Vogt 2011, 50.
27Schepers 1965.
28Aquinas 1975, 221f: “Contingens a necessario differt secundum quod unumquodque in sua causa est:
contingens enim sic in sua causa est ut non esse ex ea possit et esse; necessarium vero non potest ex sua
causa nisi esse. […] Ex causa necessaria certitudinaliter sequitur effectus, ita ex causa contingenti completa
si non impediatur.”
29Thomas, Summa contra gentiles II,15. Cf. Aquinas 1975, 48: “everything that can be and not-be” and “it
is indifferent to either.”
30Aquinas 1975, 46: “Deus est omnibus causa essendi.”
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In particular, God’s free will is the origin of this world. Nonetheless, Thomas does not
exclude that natural reality is populated by both necessary and contingent beings. Abso-
lute necessity (necessitas absoluta), he writes in Summa contra gentiles II 29, does not
pertain to God, since His decision and action is independent from any constriction (debi-
tum). Rather, absolute necessity pertains to the immaterial, or “separated” beings as well
as to those bodies in which the form fulfills all potentialities of their matter, as is the case
with the heavenly bodies transported in circles. As for terrestrial (sublunary) bodies, their
forms are imperfectly realized. Matter, as the potentiality to take different forms, is at the
origin of their contingency, that is, it is the source of the possibility to realize or not to
realize a certain effect: “But in things whose form does not fulfill the total potentiality of
the matter, there still remains in the matter potentiality to another form.”31 For the low
realm of birth, corruption, and change, Thomas speaks of conditional necessity (necessi-
tas conditionalis). In the sublunary sphere, contingency cohabits with absolute necessity
(e.g., the inevitability of death for all animals and the hylemorphic composition of all
bodies). Whereas necessity pertains to the formal determinations of natural phenomena,
contingency is the partial fulfillment of necessary tendencies.32

According to Scholastic terminology, there is always a “quid” producing the devia-
tion of material phenomena from their formal rule. We will call this outlook an “ontology
and epistemology of contingency.”33 The Pythagoreanism of many Renaissance scholars
such as Benedetti did not depart from a view stressing the contingent character of natu-
ral phenomena in general. As we will argue, one encounters in Benedetti’s physics and
mechanics a systematic use of theoretical tools implying natural contingency in the form
of a distinction and interrelation between formal mathematical necessity and its material
realization. In order to understand Benedetti’s mathematical treatment of contingency it
is useful to consider the medieval approaches to contingency, especially the science of
weights (scientia de ponderibus) he relied upon.

The idea of contingency informing physics and mechanics was related to its use in
other disciplines, even ethics. Whereas there can be no obstacle impeding the realization
of God’s will, which is therefore “absolute” (voluntas absoluta), human will, or voluntas
secundum quid, is conditioned by circumstances. In other words, the realization of the
highest aims of humankind is intrinsically contingent, as Dante expressed in the Divine
Comedy:

But utterance and feeling among mortals,
For reasons which are evident to you,
Have different feathers making up their wings.
I, too, as man feel this disparity […].34

31Summa contra gentiles II 30: “In quibus [rebus] vero forma non complet totam potentiam materiae, rema-
net adhuc in materia potentia ad aliam formam.” Cf. Aquinas 1975, 87.
32Summa contra gentiles II 23: “Omnis enim agentis per necessitatem naturae virtus determinatur ad unum
effectum. Et inde est quod omnia naturalia semper eveniunt in eodem modo, nisi per impedimentum: non
autem voluntaria. Divina autem virtus non ordinatur ad unum effectum tantum […]. Deus non agit per
necessitate naturae, sed per voluntatem.” Cf. Aquinas 1975, 68: “For the power of every agent which acts
by natural necessity is determined to one effect; that is why all natural things invariably happen in the same
way, unless there be an obstacle; while voluntary things do not. God’s power, however, is not ordered to
one effect only […]. Therefore, God acts, not out of natural necessity, but by His will.”
33Omodeo and Renn 2015.
34Alighieri 1984, 94; Dante Alighieri, Paradiso XV 79–83:

“Ma voglia e argomento ne’ mortali,
per la cagion ch’a voi è manifesta,
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Apart from ethical contingency, Scholastic authors also used secundum quid in logic.
For instance, Petrus Hispanus explained the meaning of the so-called secundum quid fal-
lacy in his Tractatus sive summule logicales, commenting on Aristotle’s On Sophistical
Refutations V (166b36–167a14).35

In logic, secundum quid meant either a “diminution” of a concept through restriction
of its definition (secundum quid et simpliciter), or the designation of a subject through one
of its parts or characteristics (denominatio totius per partem). A secundum quid fallacy
occurs if an identity is established between something considered in a particular respect
and the same thing considered absolutely (or simpliciter). For instance, the existence of a
depicted animal does not imply the existence of the animal simpliciter. Thus, the argument
“est animal pictum, ergo est animal” is not correct. In this case, there is a quid signalizing
the gap between universal necessity and particular or concrete contingency.

4.3.2 Contingent Causation in the scientia de ponderibus

The scientia de ponderibus heavily drew on the idea of the conditional limitation of natu-
ral necessity depending on circumstances (secundum situationem, also literally meant as
“depending on the position”). In particular, the concept of gravitas secundum quid, or po-
sitional heaviness, had a powerful explanatory function, most notably in the Aristotelian
treatment of weights by Jordanus Nemorarius, and continued to be essential during the
Renaissance in the reflections on mechanics by scholars such as Tartaglia, Cardano, and
Benedetti himself.36

In mechanics the “limitation” or “determination” secundum quid implied that the dy-
namic tendency of a body was reduced or enhanced depending on intervening constraints
or circumstances, in particular mechanical ones. The rotations of a lever around a pivot or
of a balance around its fulcrum were conceptualized as constrained motions. In such dis-
placements, the inherent (“necessary”) vertical tendency of a weight resulted in a circular
motion due to external constraints. Similarly, the heaviness (gravitas) of the bodies sus-
pended at the extremities of a simple machine varied in relation to their changing positions
within the system. In such cases, a “necessary” straightforward motion in accordance with
natural order resulted contingently in a circular one. The implicit mental model for this
kind of displacement was that “circular motion is constrained rectilinear motion.” This
means that, in the sublunary sphere of contingency, straightforwardness and rectilinear
tendency had a higher onto-epistemological status than circularity since straightforward-
ness was necessarily rooted in natural order. By contrast, circularity, as the deviation from
such order, had to be explained. As a consequence, circularity (in the elementary sphere)
was allotted a derived and subordinated onto-epistemological status. In other words, cir-
cularity was an instance of nature departing from necessity owing to some rather elusive
factor or secundum quid. From this viewpoint, it was seen as a deviant realization of given
potentialities similar to moral deviation from the necessary laws of uprightness. In order
to stress that the mechanical treatment of the scientia de ponderibus was embedded in the
framework of contingency, we could also formulate the principle in this way: “circular
motion is rectilinear motion modified by a contingency.”

diversamente son pennuti in ali;
ond’ io, che son mortal, mi sento in questa
disagguaglianza […].”

Also, see Paradiso IV, 87, IV, 109, IV, 113, and Purgatorio VII, 57.
35Hispanus 1972, 157–158.
36See Renn and Damerow 2012, especially the sections from 3.6 to 3.8.
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Almost at the beginning of his small treatise “on the weights,” Nemorarius stressed
his Aristotelian commitment. In fact, his approach was based on the opposition between
the natural vertical motion of the elements and the violent hindrances producing circular
deviation. At the same time, he introduced the key concept of gravitas secundum quid (in
some cases, also levitas secundum quid), which we will refer to as “positional heaviness.”

[…] if equal arcs are taken on a greater circle, and on a smaller one, the chord
of the arc of the greater circle is longer. From this I can then show that a
weight on the arm of a balance becomes lighter, to the extent that it descends
along the semicircle. For let it descend from the upper end of the semicircle,
descending continuously. I then say that since the longer arc of the circle is
more contrary to a straight line than is the shorter arc, the fall of the heavy
body along the greater arc is more contrary to the fall which the heavy body
would have along the straight line than is a fall through a shorter arc. It is
therefore clear that there is more violence in the movement over the longer
arc than over the shorter one; otherwise the motion would become heavier.
Since something moves with more violence in the ascent [along the arc], it
is apparent that there is more positional heaviness [gravitas secundum situm]
and, as it is like that depending on position [secundum situationem], one can
aptly call it ‘positional heaviness’ [gravitas secundum situm].37

In its circular descent along a circular path, a weight deviates from its natural tendency,
or intentio, the more the arm of the balance departs from the horizontal position. There-
fore, the “violence” is greater when the arc of displacement is longer, while the weight
progressively loses its weight insofar as the vertical component in its motion is reduced.

According to Nemorarius, a weight that reaches the bottom of the circular arc de-
scribed by the arm in its displacement is not “at rest” but only “lighter.” In fact, a natural
being is at rest only if it is fully accomplished, that is, once it has realized the aim, or
act, toward which its power is directed teleologically. By contrast, a body is always in
motion, or striving to move, until it has reached its end: “All motion strives toward its
aim—indeed the whole nature strives towards actuality and is realized [in it]—hence the
opposition occurs against [a displacement] contrary [to the natural tendency].”38

A body on one arm of the balance becomes lighter during its downward motion than
an equal one located on the other extremity. Thus, as Nemorarius assumes, or tries to
demonstrate, a balance removed from its state of equilibrium will tend to restore the orig-
inal state. As one reads in the propositio secunda (with reference to the diagram in Figure
4.1), which is the second of a series of propositions developing the details of Nemorarius’s
doctrine of weights,

Suppose now that the descent occurs on the side B and the ascent on the side
C. I say that both will go back to the [horizontal] position of equality. In fact,

37Nemore 1533, f. A3v (emphasis added): “[…] si sumantur de circulomaiori et minori arcus aequales, corda
arcum maioris circuli longior est. Propeterea posset ex hoc ostendi, quod pondus in libra tanto sit levius,
quanto plus descendit in semicirculo. Incipiat igitur mobile descendere a summo semicirculi, et descendat
continue. Dico tunc quod maior arcus circuli plus contrariatur rectae lineae quam minor, et casus gravis per
arcum maiorem, plus contrariatur casui gravis, qui per rectam fieri debet, quam casus per arcum minorem.
Patet ergo maior est violentiam in motus secundum arcum maiorem, quam secundum minorem. Aliter enim
fieret motus magis gravis. Cum ergo plus in ascensu aliquod movetur violentiae, patet, quam maiore est
gravitas secundum situm, et quia secundum situationem talium sic sit, dicatur gravitas secundum situm.”
38Nemore 1533, ff. A3v–A3r: “In termino enim cuiscunque motus intenditur, intenditur et viget tota natura
in actu, qui in motu sit quasi in potentia, secundum quem fiebat contrarietatis suae oppositio.”



90 4. Epistemology

Bwill not further descend, because its descent towardsD is more oblique than
the ascent of C towards the [horizontal position of] equality; in fact, B and C
are equidistant from the place of equality.39

Figure 4.1: Diagram accompanying preposition two in Apianus’s 1533 edition of Nemorarius’s
Liber de ponderibus (1533, f. B2r). (Bayerische Staatsbibliothek)

Nemorarius’s reasoning becomes clearer in light of propositions four and five:

Fourth [proposition]: It is positionally heavier, insofar as its descent, in the
same position, is less oblique.
Fifth [proposition]: But a more oblique descent partakes less of the straight
[descent], for the same quantity [of the path].40

In proposition five, it is suggested that the vertical components of the potential descents
of the two beams could be identified and compared. This was the source of the idea
that the variation of heaviness could also be determined by comparing the straightness of
the descents. A similar procedure was later taken up and explained in detail in Niccolò
Tartaglia’s considerations in the Questiti et inventioni diverse (1546) about the manner of
ascertaining the positional heaviness of two weights on the basis of the so-called angles
of contact. These are the “curvilinear” or “mixed” angles between the circular path of the

39Nemore 1533, ff. B2r–v: “Ponatur nunc, quod fiat descensus a parte B, et ascensus a parte C, dico quod
redibunt ad situm aequalitatis. Non enim ulterius descendet B, eo quod descensus eius versus D magis
obliquus est, quam ascensus C ad aequalitatem; B enim et C iam aequaliter distant a situ aequalitatis.”
40Nemore 1533, f. A3r: “Quarta [propositio]: Secundum situm gravius esse, quanto in eodem situ minus
obliquus est descensus. Quinta [propositio]: Obliquiorem autem descensum minus capere de directo, in
eadem quantitate.” Translation from Renn and Damerow 2012, 63. For proposition four, see Nemore 1533,
f. B3v–B4r and, for proposition five, Nemore 1533, f. B4r–C2v.
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arms of a balance and the vertical lines connecting the weights to the cosmological center
of gravity (see Figure 4.2). Tartaglia compared the angles of contact of two equal weights
located on the extremes of a balance, and argued that the lifted one is always smaller
than the lowered one. Thus, the lifted weight would face a descent that is more oblique.
It would acquire a greater positional heaviness than its lowered counterweight and, as a
further consequence, the inclined system would reestablish its horizontal balance, if not
hindered to do so.

Figure 4.2: In the Quesiti et invenzioni diverse, Tartaglia argued that the relative positional
heaviness of the weights A and B on a balance could be determined on the basis of the
“mixed” angles of contact HAF and DBF. Since it is argued that DBF < HAF, the
weight B will be heavier than A. Thus, the inclined system will strive toward the
restoration of a horizontal equilibrium. (Max Planck Institute for the History of
Science, Library)

In spite of his attempt to quantify the quid accounting for the alleged restorative motion of
the inclined balance, Tartaglia’s geometrical quantification maintained a margin of inde-
terminancy. As he stated, the ratio between the two mixed angles is less than that between
any determined quantities. Therefore, it is impossible to stabilize the system in its inclined
position by adding a small (no matter how small) weight on the lowered side of the bal-
ance. According to Tartaglia, it is impossible to counterbalance the positional heaviness
of the lifted weight. Quite on the contrary, any additional weight added to the lowered
side would make the balance rotate and reach the vertical position.41

4.4 The Epistemological Import of Benedetti’s Generalization from Weights to
Forces

As we have argued so far, in the medieval scientia de ponderibus circular motion is con-
ceived of as constrained linear motion. Yet, within an Aristotelian cosmology, this mental
model is restricted to the sublunary sphere, where motions cannot fulfill their nature. This
is indeed the sphere of contingency, where a gap is to be witnessed between the necessary

41Tartaglia’s approach was controversial, already in his time. See Renn and Omodeo 2013, sec. 3.6.
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order of things (or “nature” as actuality) and the effective phenomena (subjected to “vi-
olence” or to external constraints). The four elements naturally tend toward their places
through a straightforward descent or ascent. Heavy bodies, for instance, strive toward the
center of gravity, which is, at the same time, the center of the cosmos. If their motion
is hindered, as is the case with mechanical constraints, a certain factor or quid has to be
taken into account, which explains the deviation from the rule. In this theoretical context,
contingency is the concept expressing the relationship between the natural law and phe-
nomenal reality, which follows a norm while deviating from it. The secundum quid is that
which explains this deviation. Possibly, it has to be expressed through geometrical means,
although it might prove unintelligible or infinitesimal, as was the case with Tartaglia’s ra-
tio between mixed angles accounting for the gravitas secundum quid of the weights of a
balance. In the treatment of weights, in particular of those on a balance, Nemorarius and
his followers made a limited use of the mental model of curvilinear motion as constrained
linear motion. In fact, they employed it to account for phenomena linked to gravity (i.e.,
the vertical fall of bodies explained in Aristotelian terms). It was Benedetti who made the
decisive step toward the generalization of this model in the direction of inertial dynamics.
Let us consider his application of it first to balances and then to centrifugal forces.

In the section on mechanics of the Diversae speculationes, Benedetti picked up and
revised the Scholastic concept of gravitas secundum quid. Guidobaldo del Monte had
already criticized Nemorarius’s and his followers’ conclusion that an inclined balance
hinged on its fulcrum as its center of gravity would return to the horizontal position, but
his criticism went so far as to renounce the concept of positional heaviness altogether.42

Relying on the Archimedean concept of the center of gravity of a body, Del Monte
concluded that an equal-arms balance hinged on its fulcrum would remain stable in any
position (a correct conclusion only if it is assumed, in modern terms, that the gravita-
tional field is homogeneous): “Propositio IV: Libra horizonti aequidistans aequalia in
extremitatibus, aequaliterque a centro in ipsa libra collocato, distantia habens pondera;
sive inde moveatur, sive minus, ubicunque relicta manebit.” (Fourth Proposition: Take a
balance that is equidistant from the horizon and that has weights in its extremities which
have the same weight and equally distant from the center (the latter being located in the
balance itself). Whether it is displaced or not, it will remain in the same position in any
position.)43

Benedetti shared the criticism of Nemorarius and Tartaglia with regard to their spe-
cific argumentation about the tendency of such an inclined balance to reach the horizontal
position but based his judgement on a novel treatment of positional heaviness. The first
chapter of Benedetti’s De mechanicis begins with the statement: “Every weight placed at
the end of an arm of a balance has a greater or a lesser heaviness depending on differences
in the position of the arm itself.”44

Hence, he clearly committed himself to a mechanical theory of equilibrium based on
positional heaviness. Benedetti’s technical terms are not always employed in a rigorous
and consistent manner. He treats the pondus at times as the varying quantity to be taken
into consideration, as is shown by expressions like “proportio ponderis in C ad idem pon-
dus in F” and “unde fit… pondus magis aut minus grave,” in De mechanicis II (Benedetti
1585, 142). Given these semantic fluctuations, we will translate pondus as “body” or as

42Renn andDamerow 2012, 86–92. Wewill discuss the divergent interpretations of Benedetti and DelMonte
later, in chapter 5.
43Damerow and Renn 2010, 65.
44Drake andDrabkin 1969, 166. Benedetti 1585, 141: “Omne pondus positum in extremitate alicuius brachii
librae maiorem, aut minorem gravitatem habet.”
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“weight” and gravitas as “heaviness” or as “weight,” depending on the context. At the
beginning of chapter 1 of his book on mechanics, Benedetti talks of a varying quantity
of heaviness, or gravity (gravitas), belonging to a weight (pondus) or a body placed on a
balance beam. Hence, he makes a terminological distinction between pondus, as a kind of
absolute weight or heavy thing, and gravitas, as a downward tendency that can act with
more or less force on the body (depending on the inclination of the beam). In this case (as
in most cases in the text), pondus has the essentialist meaning of a substance (a substra-
tum or ὑποκείμενον). It is the body or weight on the balance, whose special property of
being heavy, namely the gravitas, varies depending on a quid. This quid is the position,
or situm.

Benedetti seeks to quantify it by means of a method he invented. He considers the
line, which he calls linea inclinationis or linea itineris, connecting a weight on an inclined
balance beam to the cosmological center of gravity. Note that Benedetti calls the elemen-
tary downward tendency an iter from a merely kinematic viewpoint, but also an inclinatio
from a physical and more proper one. According to him, the major or minor heaviness of
the weight can be assessed through the projection of the linea inclinationis on the horizon-
tal line passing through the fulcrum (Figure 5.1). The more distant it is from the fulcrum,
the heavier the positional heaviness becomes. Thus, the weight reaches a maximum of
heaviness when the balance is horizontal, and its minimum when it is vertically resting
(nititur) on the fulcrum or hanging (pendet) from it. Notably, this approach anticipates
the one based on the determination of the torque in classical physics, and comes to the
same conclusions.45

Additionally, Benedetti equates the heaviness to a virtus, vis, or vigor, i.e., a force,
which might also act in different directions (in De mechanicis, Ch. 3) and is applied to
the extremity of a constrained mechanical system, like a lever or a balance. This is a
significant generalization from weights to forces, but for our present discussion the most
important generalization relates to rectilinear tangential tendencies in systems set in cir-
cular motion.46

The relevant treatment is the epistle to Capra and is included in theDiversae specula-
tiones. It deals with the rotation of a millstone and the question of whether its motion could
be perpetual. Benedetti denies this by arguing that the rotation is impeded first by the fric-
tion of the air and, second and more importantly, by the resistance of the millstone’s parts.
The latter have a straightforward tendency, an inclinatio recte eundi, along the tangential
lines of their rotation (Figure 4.3). As one reads, this rectilinear inclination or impulse
(impetus) can be bent only by violence. Moreover, the centrifugal tendency grows in pro-
portion to the augmentation of the velocity, as witnessed by other cases, among them the
rotation of a catapult or a sling (machina missilis). A centrifugal tendency is seen as a
rectilinear natural inclination (naturalis inclinatio recte eundi).

You ask me this question in your letter. Suppose a millstone rested on a vir-
tually mathematical point and was set in circular motion, could that circular
motion continue without end, assuming that the millstone is perfectly round
and smooth?
I answer that this kind of motion will certainly not be perpetual and will not
even last long. For apart from the fact that the wheel is constrained by the
air which surrounds it and offers resistance to it, there is also resistance from

45Renn and Damerow 2012, 138. We will deal with the details of Benedetti’s mechanics in the next section.
46Cf. Büttner 2008.
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the parts of the moving body itself. When these parts are in motion, they
have by nature a tendency [impetus] to move along a straight path. Hence,
since all the parts are joined, and any one of them is continuous with another,
they suffer constraint in moving circularly and they remain joined together in
such motion only under compulsion. For the more they move, the more there
grows in them the natural tendency to move in a straight line, and therefore
the more contrary to their nature is their circular motion. And so they come
to rest naturally: for, since it is natural to them, when they are in motion, to
move in straight line, it follows that, the more they rotate under compulsion,
the more does one part resist the next one and, so to speak, hold back the one
in front of it.47

Figure 4.3: A diagram showing Benedetti’s considerations on the rotating millstone stressing the
centrifugal tendencies of its parts. (Drawing by Irina Tupikova)

Themental model of circular motion as constrained straight motion receives in Benedetti’s
treatment a higher degree of generalization. In this case, he argues that, since it contrasts
47Drake and Drabkin 1969, 229. Benedetti 1585, 285 (emphasis added): “Quaeris a me literis tuis, an motus
circularis alicuius molae molendinariae, si super aliquod punctum, quasi mathematicum, quiesceret, posset
esse perpetuus, cum aliquando esset mota, supponendo etiam eandem esse perfecte rotundam, et laevigatam.
Respondeo huiusmodi motum nullo modo futurum perpetuum, nec etiam multum duraturum, quia praeter-
quam quem ab aere qui ei circumcirca aliquam resistentiam facit stringitur, est etiam resistentia partium
illius corporis moti, quae cum motae sunt, natura, impetum habent efficiendi iter directum, unde cum si-
mul iunctae sint, et earum una continuata cum alia. Dum circulariter moventur patiuntur violentiam, et in
huiusmodi motu per vim unitae manent, quia quanto magis moventur, tanto magis in iis crescit naturalis
inclinatio recta eundi, unde tanto magis contra suammet naturam volvuntur, ita ut secundum naturam quie-
scant, quia cum eis proprium sit, quando sunt motae, eundi recta, quanto violentius volvuntur, tanto magis
una resistit alteri, et quasi retro revocat eam, quae antea reperitur habere.”



4. Epistemology 95

with a natural inclination, it cannot be eternal. Note that this assumption (violent motion
cannot be eternal) is Aristotelian but emerges in a context in which this legacy is meant to
be rejected.48

Another Aristotelian echo looms over Benedetti’s statement that the linear tendency
makes a body “lighter,” since if it were freed from the constraint hindering its projection,
it would not fall vertically but rather travel through a more or less rectilinear trajectory
tangent to the circular motion of the constrained rotation. In the conclusion of his re-
flection on the natural rectilinear striving of the parts of a body set in circular motion,
Benedetti stressed the originality of his treatment “without precedents” and its opposition
to Aristotelian dynamics (according to which the projection of a body through a medium
presupposes the support of the medium itself).

But if you wish to see this truth more clearly, imagine that while the body, i.e.,
the top, is spinning around very rapidly, it is cut up or divided into many parts.
You will observe not that those parts immediately fall toward the center of the
universe, but that they move in a straight line, and, so to speak, horizontally.
No one, so far as I know, has previously made this observation on the subject
of the top.

From such motion of the top or of a body of this kind it may be clearly seen
how mistaken are the Peripatetics on the subject of the forced motion of a
body. They hold that the body is driven forward by the air which enters [be-
hind it] to occupy the space left by the body. But actually the opposite effect
[that is to say, resistance] is produced by the air.49

We have so far observed two instances in Benedetti’s work on mechanics in which a ten-
sion between mathematical laws of nature and their empirical realization emerges: his
treatment of the rotation of a beam about its pole and that of a turning wheel. In both
cases, natural straightforward tendencies are constrained and deviated into violent circular
ones. The epistemological meaning of these concepts lies in the possibility of a geomet-
rical treatment of natural contingency seen as the connection between the necessity of the
rules and of the principles and their necessitation, that is, their deviation, as witnessed by
the empirical reality of curvilinear motions.

4.5 From inclinatio to inertia and Beyond: Mechanistic Perspectives

René Descartes generalized the insights implicit in the idea that curvilinear motion is con-
tingent rectilinearity at an epistemic level (through the expansion of their realm of appli-
cation) as well as at an epistemological and ontological level (giving them a foundational
meaning). In Le Monde, circular motion is treated as a deviation from rectilinear motion.

48On Benedetti’s anti-Aristotelianism, see Maccagni 1983.
49Drake and Drabkin 1969, 229–230. Benedetti 1585, 285: “Sed si clarius, hanc veritatem videre cupis,
cogita illud corpus, trochum scilicet, dum velocissime circunducitur secari, seu dividi in multas partes, unde
videbis illas omnesque, non illico versus mundi centrum descendere, sed recta orizontaliter, ut ita dicam,
moveri. Id quem a nemine adhuc (quem sciam) in trocho est obseruatum. Ab huiusmodi motu trochi, aut
huius generis corporis, clare perspicitur, quam errent peripatetici circa motum violentum alicuius corporis,
qui existimant aerem qui subintrat ab occupandum locum a corpore relictum, ipsum corpus impellere, cum
ab hoc, magis effectus contrarius nascatur.”
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Descartes develops a general theory of the world in which circularity is the main charac-
teristic of the motions of both the particles of matter as well as of planets revolving about
the centers of their orbits.50

[…] when a body is moving, even if its motion most often takes place along a
curved line and, as we said above, it can never make any movement that is not
in some way circular, nevertheless each of its parts individually tends always
to continue moving along a straight line. And so the action of these parts, that
is, the inclination they have to move, is different from their motion.51

This is the third of Descartes’s three laws of nature (loix or règles de la Nature) as exposed
in chapter 7 (“ Des loix de la nature de ce nouveau Monde” ). It follows the inertial law
of conservation of the state of the bodies and that of the conservation of the quantity of
motion. The third law is particularly relevant from the viewpoint of our epistemological
inquiry into mathematics without necessity, since it clearly expresses the gap between
law and effective reality, between the straightforward tendency of all bodies and their
real circular motions, in a manner that is akin to medieval and Renaissance predecessors
such as Benedetti. Note that Descartes calls the rectilinear tendency “ inclination” just as
Benedetti called it “inclinatio recte eundi.” This terminological choice is apt to express its
character as a natural inner tendency. The examples that Descartes choses to illustrate his
claim are familiar to readers of Renaissance sources on mechanics: the wheel (une roue)
and the sling (fronde) (Figure 4.4).

In the Études galiléennes, Koyré affirmed the complete independence of the law of
inertia, which is only in nuce in Galileo’s physics, from experience, since rectilinear mo-
tion is never observed in nature. “Contrairement à ce qu’on affirme bien souvent, la loi
d’inertie n’a pas son origine dans l’expérience du sens commun et n’est ni une généralisa-
tion de cette expérience, ni même son idéalisation. Ce que l’on trouve dans l’expérience,
c’est le mouvement circulaire ou, plus généralement, le mouvement curviligne. On n’est
jamais—sauf le cas exceptionnel de la chute, qui n’est justement pas un mouvement iner-
tial—en présence d’un mouvement rectiligne.”52

In light of our reconstruction, this statement proves quite inaccurate. As we have
seen, the vertical fall of a heavy body is not the only observable straight motion: the be-
ginning of the trajectory of a projectile thrown with great speed also looks rectilinear.
Slings and catapults are in fact the instruments with which turning wheels and rotating
millstones were compared, and it was from these instruments that Benedetti, Descartes,
and also Galileo in the Second Day of the Dialogo sopra i massimi system del mondo,
derived the centrifugal tendencies of the parts of rotating objects. Is this not a generaliza-
tion from experience? Such generalization went so far as to include the explanation of the
behavior of bodies on a rotating Earth, in the case of Galileo, and the conceptualization of
corpuscular and planetary motions, as was the case for Descartes. Moreover, before the
classical law of inertia was defined, what took center stage was the observation of rec-
tilinear motions—either the vertical fall or centrifugal tendencies—and of their circular
deviations. A major physical problem faced by Scholastic and post-Scholastic mechanics
50On the Cartesian cosmos, see Aiton 1972, 30–64 and Gaukroger 2006, 304–317.
51Descartes 1998, 29. Descartes 1986, 43–44: “ Lors qu’ un corps se meut, encore que son mouvement
se fasse plus souvent en ligne courbe, et qu’ il ne s’ en puisse jamais faire aucun, qui ne soit en quelque
façon circulaire […], toutesfois chacune de ses parties en particulier tend toujours à continuer la sien en
ligne droite. Et ainsi leur action, c’ est à dire l’ inclination qu’ elles ont à se mouvoir, est differente de leur
mouvement.”
52Koyré 1986, 206.
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Figure 4.4: Descartes’s visualization of the
centrifugal tendency of bodies
thrown by a sling, in Le Monde,
Ch.7. (Bayerische
Staatsbibliothek)

was precisely that of conceptualizing the relationship between curves and straight lines. In
particular, against the backdrop of Aristotelian philosophy, curvilinear motion appeared as
constrained. It was a derived displacement resulting from a violent external intervention
bending the straightforward natural tendency of a moving body. In such an Aristotelian
and post-Aristotelian context, circular motion was seen as contingent. That is to say, it
was the deviation from natural order depending on an obstacle which was called the “se-
cundum quid.” As we have argued, the concept of “secundum quid” is embedded in the
Scholastic reflections upon natural necessity, order, and contingency. It was referred to
as a model of causality in which the observed phenomena represent a partial fulfillment
of an underlying order, or of natural laws. Accordingly, elementary bodies express their
necessary laws in a limited manner, that is, they have to be explained through the so-
called necessitas conditionata or necessitas secundum quid. Contingency is the relation
between necessary order and phenomenal reality. The gap has to be explained, and was
explained with a quid, a factor, or a determination. Accordingly, a quid was introduced
into mechanics to account for circular motions in terms of mechanical constraints.

In the medieval scientia de ponderibus, two determinations were considered for the
equilibrium of a balance: first, the circle resulting from the inclusion of the vertical mo-
tions of the weights in amechanical system, and second, the situm (location) of the weights
in a mechanical system determining a variation in heaviness. The reflection on gravitas
secundum situm (positional heaviness) from Nemorarius to Benedetti presupposes this
twofold quidditas and focuses on the latter aspect (the variation of the heaviness).
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The conviction that circular motion, as a violent motion, requires an explanation is
based on the mental model that “circular motion is constrained (or contingented) straight
motion.” Although they were embedded in the medieval discourse on contingency, the
several attempts to quantify the quid accounting for the deviation testify to the common
effort to overcome the qualitative and indeterminable characterization of contingency as
a form of causality. What was maintained, for instance in Descartes, was the idea of a
gap between law and phenomenon. Yet, if the deviation from the law can be perfectly
quantified, then the separation between the order of nature and its realization is virtually
eliminated, that is, the fracture between absolute necessity and conditional necessity is
recomposed. To be sure, this step toward the necessitation of nature, resulting from the
abandonment of contingency in both senses (causal and epistemological), was accom-
plished only later, in the course of the seventeenth century.

The work of Benedetti and his onto-epistemology of contingency are representative
of an age of transition from Scholastic and Renaissance natural philosophies to the various
instantiations of the classical science of the next century. Benedetti’s Pythagorean com-
mitment to mathematics, seen as the most powerful logical means applied to all fields of
knowledge and to nature in particular, is an illustrative case of the complex and non-linear
history of scientific thought. His efforts to overcome Aristotelian conceptions could not
really renounce the crucial assumption of the Aristotelian outlook under attack. This par-
ticularly concerns the ontology and epistemology underlying his scientific theories and
practices. Mathematical determination, both in science and nature, did not imply neces-
sity, neither at the level of material causation nor of explanation. The gap between the laws
of nature and the effective processes reflected a Scholastic distinction between formal ne-
cessity and material imperfection. Such philosophical assumptions underpinned medieval
treatments of phenomena, including statics, and Renaissance developments, especially in
the line connecting Tartaglia and Cardano to Benedetti and Descartes. The distinction be-
tween formal necessity and phenomenal contingency offered them a horizon within which
they could conceptualize general laws as well as their empirical instantiation. In partic-
ular, Benedetti could extend the area of application for the mental model that circular
motion is a constrained (violent) deviation from the law of rectilinear motion. He did this
by applying a model originating from statics to the area of dynamics, thus paving the way
for the classical concept of inertia. However, we should not neglect the practical roots of
his work in a Scholastic-embedded science of weights, which generalized observations of
mechanical systems in order to make universal statements about nature.


