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Preface

Bryce DeWitt recalls having a conversation with Pauli in 1949, at the Institute for Ad-
vanced Study, in which Pauli asked him what he was working on,1 to which DeWitt re-
sponded: “trying to quantize the gravitational field.” Pauli was something of a veteran
of quantum gravity by this time. His response, after shaking and nodding his head a few
times (“die Paulibewegung”), was: “That is a very important problem—but it will take
someone really smart!”.2 More than half a century since this conversation, and with the
work of many genuinely “really smart” people (including several geniuses), the problem
has, of course, not yet been resolved. Yet still the field has accumulated a rich and inter-
esting past that has yet to be properly studied. It has become customary to mark a certain
stage of maturity of a theory by producing a volume of sources of early papers from which
that maturity emerged.

Though quantum gravity has not yet achieved full scientific maturity, it has at least
achieved chronological maturity, with almost a century of struggle behind it. Therefore,
we feel it is entirely appropriate to treat this old timer with some respect, of which it has
not received all that much from the history of physics. A volume providing a historical
overview, after so long without one, can be beneficial to the current and future generation
of physicists working on the problem, in order to see how far research on the problem (and
the way the very problem itself is conceptualized) has come—this further provides a fresh
perspective on what still remains to be done. It might point to further refinements of how
we understand the problem so that it can finally be resolved.

As Julian Schwinger pointed out in the preface to his own collection of papers from
the history of quantum electrodynamics,3 any such selection of sources is bound to reflect
the particular viewpoint of the editor(s). Following Schwinger, we briefly describe our
“selection process.” Despite the fact that the period we cover spans only 35 years, it was
necessary to be fairly brutal in rejecting papers for which a case for inclusion could easily
be made. Likewise, it is likely that cases could be made for excluding many of the papers
we decided to include. The point is, the sources chosen are an imperfect reflection of the
development of a field, and one important reason for this is that “the field” in question has
always been somewhat slippery and hard to define, but especially so in its earliest phases
of development. One can’t, for example, point to particular phenomena that the theory
will describe since any such phenomena would be experimentally and observationally
very remote. Moreover, in the earliest phases of research, the ingredient theories (general
relativity and quantum mechanics) were themselves still being worked through and, in the
case of the latter, were not properly formulated for some time (as Part I indicates). Thus
one finds the definition of the problem of quantum gravity is non-stationary on account
of being largely at the mercy of wider developments in quantum mechanics and general
relativity in our chosen time period—one sees this especially clearly in Part II, but it is
really a general feature.

1DeWitt (then still using the name Carl Bryce Seligman) had only just finished his doctoral thesis on quan-
tum gravity (under Julian Schwinger at Harvard: submitted in December, 1949), and was interested in the
possibility of a postdoc at ETH.
2“Quantum Gravity: Yesterday and Today.” General Relativity and Gravitation 41, 2009: p. 414.
3Selected Papers on Quantum Electrodynamics (Dover, 1958).
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Firstly, let us explain the period we have restricted our sources to, namely <1950.
This is a relatively short snapshot of history, but it has the advantage of revealing the
steps taken before the rather dramatic explosion of work in the 1950s—this explosion was
due to a variety of factors beyond internal advances in physics, including the emergence
of new schools of research in general relativity (especially Peter Bergmann’s, Hermann
Bondi’s, Alfred Schild’s, Leopold Infeld’s, and John Wheeler’s) and new sources of fund-
ing (especially the NSF, the ONR, and other military and philanthropic programmes).4
We also find that the pre-1950 research already includes many of the main lines of attack
and the main general arguments for (and against) quantization. Focusing in on the very
earliest period sharpens the physical intuitions behind the various choices (of formalism,
terminology, and more) that have since been assimilated or forgotten.

We will now go on to explain why there are papers in here (many, in fact) that are
not strictly “quantum gravitational”. One can quite usefully think of the development of
research programmes (and questions) in a field in terms of “evolutionary trees.” Pursuing
this in the case of organisms eventually leads one outside of the species of interest. Or
one might find branch points, in which now divergent organisms converge onto a common
ancestor. Likewise with the evolution of a field of inquiry. Since this is a “sourcebook”,
rather than a straight history, we are guided by our present day theories and approaches,
and so are more concerned with tracing back various ancestors. Some of these ancestors
look like the present day approaches, and others don’t. But regardless of which is the
case, they have nonetheless been involved in the development of the present approaches.
Hence, we have often erred on the side of being too liberal where ideas that originated in
a slightly different context were nonetheless incorporated into quantum gravity research
at some later date.

Quantum gravity is, of course, yet to be articulated in any final, agreed upon for-
mulation. As alluded to above, with new developments in physics, the quantum gravity
project would attempt to avail itself of some potentially relevant feature—it is, thus, a
“parasitic” enterprise for much of its early history: wave mechanics, spin and the Dirac
equation, neutrinos, the discovery of new forces, mesons and cosmic rays,… . All of these
and more were immediately taken up as of potential relevance in quantum gravity’s def-
inition and domain. Parts I and II study the ways in which quantum gravity was studied
in its embryonic and infancy stages. In cases where it is not parasitic, it is viewed not so
much as a problem in its own right, but as an interesting case study, or else a resource to
cure problems in field theory more generally (the “more serious” business of physics). For
example, in 1938 one can find Born writing that there “seems to be a general conviction
that the difficulties of our present theory of ultimate particles and nuclear phenomena (the
infinite values of the self energy, the zero energy and other quantities) are connected with
the problem of merging quantum theory and [general] relativity into a consistent unit”.5
Parts III and IV cover such aspects. Part III also deals more generally with the direct quan-

4In the historical literature of general relativity it is known as “the renaissance of GR”—see, e.g., Jean
Eisenstaedt’s “The Low Water Mark of General Relativity, 1925–1955” (in D. Howard and J. Stachel, eds.,
Einstein and the History of General Relativity, Birkhäuser, 1989: 277–292), David Kaiser, “A 𝜓 is just
a 𝜓? Pedagogy, Practice, and the Reconstitution of General Relativity, 1942-1975” (Studies in History
and Philosophy of Modern Physics 29, 1998: 321–338), and AB, Roberto Lalli, and Jürgen Renn, “The
Reinvention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of
Curved Space-time” (Isis 106, 2015: 598–620).
5“A Suggestion for Unifying Quantum Theory and Relativity.” Proceedings of the Royal Society London A
165(921), 1938: p. 291. By this stage, Born was thinking of the problem as involving the mixing of quantum
principles with the principle of general covariance, rather than general relativity more broadly conceived—
this on account of the fact that “gravitation by its order of magnitude is a molar effect and applies only to
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tization of general relativity using techniques that had been applied to the electromagnetic
field.

What is interesting about these early papers, in terms of the “shut up and calculate”
narrative that is often told about physics after the war, is that the papers very rarely step into
conceptual waters. One can find none of the preoccupation with the status of observables,
the existence of space and time, the meaning of diffeomorphism symmetry, and other
such foundational problems that spring up in the 1950s—almost immediately where the
papers in this volume stop, in fact. To a certain extent this later development had to do
with physicists stepping back and considering the classical theory of general relativity
more carefully from a physical point of view than had been done previously. The reasons
for this are clear: the standard techniques faced technical problems of their own. There
was a dawning recognition, towards the end of the first half of the twentieth century, that
gravity was simply not like other forces.6 This recognition brought with it the idea that the
problem of quantum gravity will most likely not be resolved through a purely technical
solution.

masses in bulk, not to the ultimate particles.” However, the idea that general relativity might be employed
as part of the basic framework of a future theory of elementary particles became popular in later work.
6We see the sources of this in Part V in which the general covariance of general relativity was tackled head
on in the context of a parameter formalism and the constrained Hamiltonian formulation.
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Chapter 1
Quantum Theory Meets Gravitation: First Encounters
Dean Rickles

These earliest papers (taken from 1916–1921) suffer from the fact that quantum theory was
still in an embryonic state. Quantum mechanics and quantum field theory would have to
wait several years before they were even properly formulated, and so could be compared
with general relativity (as subsequent parts of this volume will cover). Still, already in
these early papers, questions were being posed concerning the proper way to understand
the relationship between quantum theory and general relativity. In addition to areas in
which there might be modifications brought about by one theory to the other (conflict), or
overlaps of some kind (coexistence), there were also “borders” raised between the theories
that persisted throughout future changes in physics in the period before 1950. Hence,
although one cannot reasonably call this research “quantum gravity,” many elements of
this pre-history nonetheless directly inspire that later research and, more importantly, serve
to demarcate the domains of the ingredient theories.

What is crucial to note in this period is that the developments in quantum theory and
in general relativity are often made by the same people, laying the foundations of both
simultaneously. For example, as the field equations of general relativity were entering
their ultimate form (“the final stage in which the battle over the field equations is being
fought out”1), Einstein was corresponding with Arnold Sommerfeld about the potential
impact of his new theory on contemporary issues in quantum theory. Sommerfeld appears
to have thought that general relativity might be of relevance (imposing new constraints
and so on) with regard to spectral physics and the Stark effect (Sommerfeld 2000, 438).
Einstein writes back:

General relativity is unlikely to be able to assist you, because it practically
coincides with themore restricted theory of relativity for those problems. […]
[A]ny other theory that corresponds with relativity in the restricted sense can
be taken over in the general theory of relativity through simple transforma-
tion, without the latter delivering any new criteria. Thus you see that I cannot
help you in the least. [Einstein, letter to Sommerfeld, [Berlin] 9 December
1915 (Schulmann et al. 1998, 159)]

However, in his paper “Näherungsweise Integration der Feldgleichungen der Gravitation”
(1916, Chapter 2 in this volume), Einstein claims that his newly constructed theory of
gravitation would itself need to be modified by quantum theory along the same lines as
classical electrodynamics so as to keep gravitationally radiating systems stable. Hence,
without a quantized emission of gravitational energy, the system would (eventually) con-
tinuously radiate away all its energy and collapse. It is, perhaps, no surprise that Einstein
was working in tandem on the quantum theory of emission and absorption of radiation at
the same time he wrote this paper on gravitational radiation, and the same terminology
and concepts can be found in both contexts.
1As described in a letter to Sommerfeld, [Berlin] 9 December 1915 (Schulmann et al. 1998, 159).
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The Einstein paper features further, and deeper, analogies between electromagnetism
and general relativity, and these analogies continued to play a role in later research on
quantum (and classical) gravity.2 For example, just as an accelerated electrically charged
particle will emit electromagnetic waves (at the velocity of light), gravitational waves were
a direct prediction of the linear theory and were also transverse and propagated at the speed
of light. The linear approach (a first approximation to the full non-linear theory, again
analogous to electrodynamics’ standard perturbative approximation where the coupling
constant is taken to be small) involves decomposing the metric 𝑔𝜇𝜈 apart as follows:

𝑔𝜇𝜈 = −𝛿𝜇𝜈 + 𝛾𝜇𝜈 (|𝛾𝜇𝜈| << 1) (1.1)

The small perturbations (representing deviations in the spacetime metric away from flat
space3) 𝛾𝜇𝜈 are defined against a flat, Minkowski spacetime background (a “Galilean
space” in which 𝑥4 = 𝑖𝑡). The calculation follows exactly the same route as for the
retarded electromagnetic potentials, giving the various analogous properties mentioned
above, including the existence of gravitational waves.

This perturbative approach (employing a background metric against which the prop-
erties of the perturbations are defined) forms one of the standard methods in later work.
As we see in Part III, Rosenfeld uses just such a framework in his early quantization and
it informs the work of Fierz and Pauli in unpacking the properties of gravitational quanta
(massless particles with two helicity states)—Jacques Solomon raised an early warning
about the problems faced when ignoring the full non-linear theory; Dmitri Ivanenko noted
that during a discussion at the Turin Congress (in 1956), Pauli expressed skepticism about
the generalisation of results from the weak field approximation to the full theory in the
case of gravitation (Ivanenko 1956, 355).

Einstein published a second paper on gravitational waves in 1918, correcting some
problems in the 1916 paper and drawing attention to some crucial differences between
the electromagnetic and gravitational cases (which had led Einstein to a serious error of
calculation).4 The most important of these concerned the differences in moments of the
radiation: dipole in the case of electrodynamics (as he had also assumed held for gravity in

2Gennady Gorelik (1992) briefly discusses the role of the electrodynamical-gravitational analogy in this
phase of Einstein’s thinking. He argues, rightly we think, that an overly strong analogy persisted in the
decades following, fooling physicists into thinking that the task of constructing a quantum theory of gravity
was going to be along the same lines as the quantum treatment of electrodynamics. Much of this was an
artefact of the linearised approximation scheme Einstein used in 1916, which eradicates the distinguishing
(and very difficult) features of gravitation. Given the tractability of the linear approximation, this was the
scheme that was used in most of the early direct quantization attempts.
3A “deviation of the continuum from one that is field-free” in Einstein’s own words (Gorelik 1992).
4The prediction of waves would form one of the central motivations for quantum gravity in the 50s. Readers
will no doubt be aware of Einstein’s double about-face in 1936, leaving him back where he started! Ein-
stein was briefly fooled into thinking that the existence of gravitational waves was an artefact of the linear
theory (true only for weak fields), so that when the non-linear field equations were used instead, the waves
were no longer physical or energy-transporting. Together with Nathan Rosen, he had originally argued that
(cylindrical) gravitational waves are unreal, in a paper entitled “Are Gravitational Waves Real?” (submit-
ted to Physical Review). But following Howard Robertson’s referee report pointing out a serious flaw in
their paper (initially dismissed as erroneous by Einstein), he switched his position (though publishing in a
different venue, the Journal of the Franklin Institute, and without acknowledgement of Robertson’s helpful
critique). For a discussion of this episode, see Kennefick (1998)—the title of Kennefick’s book (Travelling
at the Speed of Thought) refers to Eddington’s characterisation of gravitational waves in 1922 (Eddington
1922, 269).
Of course, as a practical prediction the result suffered from the fact that there were no known sources (ter-
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the 1916 paper), but quadrupole in the case of gravitation: “[A] mechanical system which
permanently retains spherical symmetry cannot radiate” (Einstein 1918, 23). Einstein
reiterates the point regarding the likely modifications of general relativity brought about
by a completed quantum theory, since the results still indicated energy loss due to thermal
agitation (Einstein 1918, 23).

Just one year later Einstein can be found speculating about the role of gravitational
fields in the constitution of elementary particles of matter (electrons) in his paper “Do
Gravitational Fields Play an Important Role in the Constitution of the Elementary Parti-
cles?”.5 The idea is to get discrete particles (electrons) out of a continuous field theory.
John Wheeler would later resurrect something similar in the early 1950s with his “Geon
project” (where a geon is a “gravitational electromagnetic entity”), in which the elemen-
tary particles are reduced to geometrical and topological aspects of such entities (see, e.g.
Wheeler (1955)).6 Once this shift in Einstein’s thinking had occurred, he didn’t waver
again and sought only classical theories as opposed to quantum gravity theories. How-
ever, there were additional important developments in Einstein’s work. Not least among
these was the result, obtained with Infeld and Hoffmann (Einstein, Infeld, and Hoffmann
1938), that enabled particle trajectories (equations of motion) to be derived from the field
equations—this would have a direct impact on Peter Bergmann’s earliest work on quantum
gravity (Bergmann 1949). Bergmann was concerned with using this feature of generally
covariant theories to eliminate the divergences caused by particle interactions (infinite in-
teraction terms) in field theories: field singularities (particles) can be determined from the
field equations. In this project, it is clear that Bergmann has Einstein’s old question, of
the constitution of elementary particles, in mind.

The general idea that quantum and gravity would have to meet in some way in a
complete formulation of the world seems to have been accepted by other physicists of the
time, and motivated subsequent early work and commentaries on the subject. While there
were many remarks pointing to the clash, there wasn’t much real detailed work to resolve
the problem, or even any systematic investigation, until Léon Rosenfeld’s efforts in 1930
(following on from initial work on quantum electrodynamics), discussed in the next parts.
As mentioned above, until quantum theory was established on a firmer footing, it would
have been impossible to tackle the problems of unification.

While the majority of the Eddington paper (Chapter 3), from 1918, amounts to a pop-
ular presentation of general relativity7, it also contains the first statement that we know
of concerning the relevance of the Planck length in connection with (quantum) gravita-

restrial or astrophysical) that could generate energies of sufficient magnitude to be detected—this changed
in the 1960s.
5According to Vizgin (2011, 163), this marks the birth of Einstein’s switch to “unified field theory,” in
which gravitational (and electromagnetic) fields are fundamental, and discrete atomic particles emergent
features. The basic question of whether and to what extent the gravitational field might be involved in the
structure of the electron also plays a part in Paper 3, by Jeffery (see below).
6In order to recover such things as charge and spin, the geon project became rather complex, with e.g.
wormholes (multiply connected space) being used to recover charge phenomenology. For more on the his-
tory, see Dieter Brill (John Wheeler’s student): http://mediathek.mpiwg-berlin.mpg.de/mediathekPublic/
versionEins/Conferences-Workshops/Quantum-Gravity/Thursday/J-A-Wheeler-Geons.html. The geon
was originally called “kugelblitz” (ball lightning) by Wheeler. It is interesting to speculate on the origins of
the concept in his work on plasma physics for Project Matterhorn: one of his geon models was a toroidal
geon of the kind that is often invoked in ball lightning research (where it is modeled as a stable, spinning
plasma toroid).
7This underplays other important aspects of the paper. For example, it includes a particular perspective
on the physical content of the general theory of relativity involving the idea that it is a theory of space
considered as “the scaffolding constructed from our measures”—a view that retains a degree of modernity.

http://mediathek.mpiwg-berlin.mpg.de/mediathekPublic/versionEins/Conferences-Workshops/Quantum-Gravity/Thursday/J-A-Wheeler-Geons.html
http://mediathek.mpiwg-berlin.mpg.de/mediathekPublic/versionEins/Conferences-Workshops/Quantum-Gravity/Thursday/J-A-Wheeler-Geons.html
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tional physics, and includes a statement of its importance in any future theories that wish
to merge gravitation (𝑐𝐺) and quantum theory (ℎ).8 Eddington sees that the minute nature
of the fundamental length generated from the theoretical constants meant that the structure
of a unifying theory will be hidden until we can probe down to the “quadrillionth or quin-
tillionth of a centimetre”.9 Though the numerical value he cites is not as we write it today
(perhaps a computational error?), given that he speaks of the fundamental unit length one
achieves by combining the three basic universal constants 𝑐𝐺ℎ, and there is only one way
to do this, we must assume that he has in mind the Planck length nonetheless.

Hence, by 1918 we already have two arguments (however coarsely and briefly ex-
pressed) for the necessity of a unification of quantum theory and general relativity (or
gravitation and quantum phenomena), both for consistency and for reasons of theoretical
unity. It is not yet quantum gravity in the sense of quantization that is being proposed.
Indeed, nothing is being proposed at this stage; rather, it is left as a future project. Both
Einstein and Eddington would soon diverge rather radically from the three motivations
outlined earlier. Though Eddington stuck to the project of unification of quantum the-
ory and general relativity, until his death, his approach departed from the reductionist
(deeper probing) method he suggests in Paper 2. Perhaps forced by the sheer distance of
scales (from known physics) we see in the Planck units, Eddington began to employ a
non-experimental methodology, culminating in his (posthumously published) Fundamen-
tal Theory (Cambridge University Press, 1946).

George Barker Jeffery (9 May 1891—27 April 1957) was one of the few physicists
to directly acknowledge Einstein’s remarks about the probable modifications that quan-
tum theory would bring about in the theory of gravitational radiation.10 The main result
of the paper (Chapter 4) is not entirely novel, though he appears to have discovered them
independently: Jeffery himself notes that he had been unaware until publication that Nord-
ström had only just derived similar results to his. The central outcome is an extension of
Schwarzschild’s line element (of space surrounding a point) to the combined electromag-
netic and gravitational case (considering particles with charge and inertial mass), done by
modifying the 𝛾-term as:

𝛾 = 1 − 2𝜅𝑚
𝑐2𝑟

+ 𝜅𝜖2

4𝜋𝑐4𝑟2 (1.2)

In this case the point is a singularity of both fields (i.e. there are two singularities), rather
than the gravitation field alone:

𝑑𝑠2 = −𝛾−1𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2 + 𝛾𝑐2𝑑𝑡2. (1.3)

8Hence, here we disagree with Gorelik who assigns priority to Matvey Bronstein in 1936 (see Gorelik
(1992, 367)). However, it is true that the first detailed analysis of the extent to which the Planck values
encode information about the quantum limits of general relativity (in the sense of measurability analysis)
was due to Bronstein. Note that the issue of domains of applicability of theories would return again, firstly
in the context of the debate about measurability limitations (alluded to already), and also in the context of a
minimum length implied by quantum theory which are also linked to the former in some cases.
9Recall that in England a quintillionth is 10−30. For two more decades, the smallest length relevant to
physics was set to 10−13 in line with the scales set by the existence of known particles (rather than any
future combination of relativity and the quantum).
10Like Eddington, Jeffery was a Quaker, and had spent time in prison in 1916 as a conscientious objector—
Einstein was aware of this writing wittily in his letter to Jeffery that it “is a highly welcome fact that a
considerable portion of England’s learned world upholds the pacifist ideal” (Kormos-Buchwald et al. 2009,
85).
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Oliver Lodge discusses Jeffery’s proposal as an attempt to “ascertain something about the
state of the aether close to an electron” (Lodge 1921, 392), which indicates something
about the transitionary state of physics at the time. But he also rightly points out that
the paper involves thinking about the status of fields near to points, and the question of
whether the elementary particles really have structure, which itself leads to the additional
question of radiation’s interaction with elementary particles in such cases (especially as
regards absorption of radiation by elementary particles). As he puts it: “a study of what
happens to radiation when it impinges on, or penetrates between the ultimate elements of
matter—in fact, a study of the whole behaviour of a stream of radiation at its two ends,
the source and the sink—is obviously of great importance” (Lodge 1921, 392). Such
reasoning is hardly shot down by the act of bringing those “ultimate elements of matter”
in line with quantum principles.

The ultimate aim of Jeffery’s paper was to show how the gravitational field might be
involved in the structure of the electron (in line with Einstein’s “turning point” mentioned
above), with the conclusion that the electrical andmass potentials would offer some kind of
stabilizing effect by opposing each other.11 This brings him to Einstein’s rather pessimistic
remarks about the fate of general relativity at the hands of quantum theory from the 1916
paper (Chapter 2), regarding the instability of the atom in the face of continuous classical
gravitational radiation. Jeffery believed that the problem could be evaded. Einstein was
not convinced by Jeffery’s idea:

I unfortunately cannot share your optimism regarding the solution to the
quantum problem. I believe that the theory of relativity does not bring us
a step closer, at least in its current form. I am convinced that the two-body
problem will not lead to a discrete manifold of paths but to a continuous one.
(Einstein, letter to Jeffery [Berlin], 18 March 1921 (Kormos-Buchwald et al.
2009, 85))

But, as we have seen, Einstein had already started down a path that followed the spirit
if not the letter of Jeffery’s approach (namely, using GR, or some modification of it, to
recover quantum behaviour). In other words, Einstein’s earlier assumption about quantum
restrictions of gravitation were replaced by the view that quantum phenomena are to be
derived from general relativity and thus are not fundamental. However, here Einstein does
not indicate this aspect of his thinking to Jeffery, and indeed the quote above looks largely
negative as far as the entire project of getting quantum from relativity goes.

Though Einstein was followed by several others along the “unified field theory” path,
the majority view was that his earlier pessimism should and could be responded to without
rejecting quantum theory, as we see in the papers that follow. In the next part, the two
11This, he thought, might be the result of an analysis of the two body problem in his scheme: a subject for
future work. Of course, this problem (exact solutions for the gravitational two-body problem for two point
singularities) would ultimately have to wait for new methods in the initial value problem and numerical
techniques—though the Einstein, Hoffmann, Infeld paper (1938) is precisely along these lines, and, as we
have seen, Bergmann used this method precisely for its ability to avoid interaction divergences. Curiously,
Jeffery argues that without including electric charge, the point singularity blows up so that one has “not
a solution with a single point singularity, but a solution with a point singularity surrounded by a spherical
surface of singularity” (see p. 42). Adding charge eliminates all zeros and infinities other than that occurring
at 𝑟 = 0. Even more curiously, Jeffery speculates that given the light deflection features of general relativity
“it would seem to be not impossible that a ray which passed sufficiently close to an attracting particle might
be so strongly deflected that it would be permanently entrapped by the particle” (see p. 42). Again, the
introduction of charge is invoked to prevent such light sinks (it seems clear that something like a black hole
is being suggested here).
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ingredient theories are worked out inmore detail along exactly the lines of figuring out how
generally relativistic principles and quantum principles can co-exist, at least in a formal-
structural sense.
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Shifting Boundaries between Quantum Theory and Relativity





Chapter 5
Where to Start? First Interactions between Wave Mechanics
and General Relativity
Alexander Blum

In the years 1925 to 1927, the old quantum theory was replaced by the newly developed
theory of quantum mechanics, which grew out of the matrix mechanics of Heisenberg,
Born, and Jordan and the wave mechanics of Schrödinger. Both of these theories were
initially formulated entirely non-relativistically. But it was clear from the outset that con-
tact would have to be made with the special theory of relativity for two important reasons:
On the one hand, the mechanics would have to be complemented with a quantum elec-
trodynamics (QED), in order to describe the emission and absorption of radiation, as well
as the particulate properties of light itself, which by this time (in the wake of the discov-
ery and interpretation of the Compton effect) was a generally accepted fact. On the other
hand, the mechanics itself would have to be made relativistic, as it was known, already
since the mid 1910s, that relativistic corrections to the kinematics of the electron would
have a measurable effect in the fine structure of atomic spectra.

It was Schrödinger’s wave mechanics, rather than matrix mechanics, that provided
the ideal starting point for a relativistic kinematics of matter: One needed to find a new,
relativistic matter wave equation, but at first glance there were no immediate other con-
ceptual difficulties, such as the problem of a non-commuting time variable in matrix me-
chanics. Schrödinger himself had initially attempted to find a relativistic wave equation,
following de Broglie’s program of matter waves, which had been formulated in a rela-
tivistic manner. But de Broglie had stopped short of addressing the dynamical equations.
Schrödinger in fact arrived at the Klein Gordon equation, but he dismissed it, due to its
empirical inadequacy (later understood as the absence of spin in the Klein Gordon equa-
tion). Others were not as scrupulous, and the Klein Gordon equation was rediscovered
(and published) multiple times in the immediate aftermath of Schrödinger’s first papers
on wave mechanics.1

Which role did general relativity play in this context? In full analogy with the case
of special relativity, two distinct problems can be distinguished. On the one hand, there is
the question of a quantum theory of the gravitational field. This will be discussed in the
next part. On the other hand, there is the question of how quantum matter interacts with
a gravitational field. We will be discussing this aspect first, because it is primary both
logically and historically: Many of those who attempted a relativistic generalization of
Schrödinger’s program didn’t see a reason to stop at special relativity—after all, the final
quantum wave equation should also be compatible with general relativity and be able to
describe the interaction of microscopic matter with a gravitational field. In two cases, the
re-discovery of the Klein Gordon equation thus actually occurred in the context of curved
space-time, in the work of Théophile de Donder and Oskar Klein.

1For a detailed history of the Klein Gordon equation, see Kragh (1984).
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It should be noted that at the time, quantum mechanics was far from being well
enough established for these works to be viewed as merely an application of the new
quantum theory to general relativity. Rather, by incorporating wave mechanics within the
better-established framework of general relativity, they sought to put the former on a surer
foundation. From a modern viewpoint, De Donder’s papers are notable for delivering the
first construction of a Klein Gordon equation in curved spacetime (Chapter 7). But for de
Donder this was not the central point. Rather, the generalization of Schrödingers “quan-
tization” procedure for arriving at the Schrödinger equation to the generally relativistic
case was in some sense meant to motivate the quantization procedure itself, even if de
Donder’s reasoning on this point is rather sketchy (Chapter 6).

In a similar vein, Klein’s attempt to bring together wave mechanics with the five-
dimensional extension of GR, proposed by Kaluza (1921) in order to unify gravity and
electromagnetism, might simply be read as the construction of a Klein Gordon wave equa-
tion in curved spacetime with an electromagnetic potential. But Klein’s main ambition
was to see whether the interpretation of Schrödinger’s waves as waves in actual space-
time, which the likes of Bohr and Heisenberg doubted from the very start, might in fact
be saved in a five-dimensional spacetime (Chapter 8). These hopes, cautiously voiced by
Klein in the conclusion to his paper, were soon to be dashed, when Klein realized that
such a theory would never be able to explain Planck’s law of black body radiation, the
problem that had led to quantum theory in the first place. In 1927, Klein converted to the
probabilistic camp, now placing his hopes for a spatio-temporal description in the newly
emerging quantum field theory.

This did not immediately change Klein’s research program: He continued to elab-
orate his classical five-dimensional field theory, but now viewed it merely as a starting
point for quantization. While work on a full theory of quantum electrodynamics was well
underway at this time, the quantization of gravity was not viewed as an immediate con-
cern. Klein’s second paper (Chapter 9) thus begins with some remarks on why general
relativity would need to be modified according to the postulates of quantum theory. This
is the first published argument for the necessity of quantizing the gravitational field. He
further argued that gravity and electrodynamics should be quantized simultaneously, that
is, that one should quantize a unified field theory rather than simple Maxwellian electro-
dynamics (interacting with a Klein Gordon matter field), as this would, in particular, allow
for a unification of the conservation laws of energy-momentum and of charge.

Indeed, if Klein’s later recollections are to be believed, his five-dimensional field
theory initially formed the classical basis for Heisenberg’s and Pauli’s attempts at formu-
lating QED.2 That is, until the Dirac equation came along in 1928 and ousted the Klein
Gordon equation as the best description of relativistic quantum matter. Initially, Dirac
saw one main advantage in his new equation over the old Klein Gordon one, namely that
it could be interpreted as a one-particle, quantummechanical Schrödinger equation (Dirac
1928). But even those who believed that any theory of matter waves would necessarily
have to be second-quantized immediately realized the superiority of the Dirac equation,
incorporating as it did the spin of the electron (and the proton).

In the wake of the Dirac equation, work immediately began on its integration into
general relativity, the most immediate goal being the formulation of the Dirac equation
in a curved (but non-dynamical) space-time. The first step in this direction was taken

2Oral history interview conducted by J. L. Heilbron and L. Rosenfeld on 25 February 1963, Niels Bohr
Library and Archives, American Institute of Physics, College Park, MD, USA, http://www.aip.org/history/
ohilist/4709_3.html.

http://www.aip.org/history/ohilist/4709_3.html
http://www.aip.org/history/ohilist/4709_3.html
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by Hugo Tetrode, already in 1928 (Chapter 10). The general idea was the following: In
Dirac’s derivation, the flat Minkowski space-time metric 𝜂𝜇𝜈 shows up in the algebra of
the Dirac 𝛾 matrices:

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝜂𝜇𝜈 (5.1)

Tetrode’s starting point was now to replace the Minkowski metric in this relation with a
generalized non-flat metric 𝑔𝜇𝜈 , turning the (elements of the) 𝛾 matrices from constants
into space-time dependent quantities, determined by the value of the metric at a given
space-time point. But this determination was not unique, in fact it did not even offer a
clear prescription for constructing the 𝛾 matrices when the metric was given. Tetrode
only presented some tentative attempts at finding such a prescription, but, soon after, Eu-
gene Wigner proposed that one could answer this question by making use of a formalism
that Einstein had developed in that same year (1928), but in an entirely different context
(Wigner 1929).

Einstein’s idea was to replace the metric 𝑔𝜇𝜈 as the fundamental quantity of his gen-
eral theory of relativity with so-called “vierbeine” (tetrads), that is, for each point in space-
time a local coordinate system spanned by four orthonormal basis vectors ℎ𝜈

𝑎, with 𝑎 run-
ning from one to four (Einstein 1928). The metric at a given point was determined by the
tetrad to be

𝑔𝜇𝜈 = ℎ𝜇𝑎𝜂𝑎𝑏ℎ𝜈𝑏, (5.2)

but the metric by itself did not determine the tetrads. Indeed, the metric is unchanged by
an arbitrary local Lorentz transformation of the tetrads

ℎ𝜇𝑎 → Λ𝑏
𝑎ℎ𝜇𝑏 (5.3)

Einstein now proposed that the relative orientation of the tetrads was not redundant infor-
mation, but actually carried physical meaning. In other words, once one has defined an
𝑥 axis at some point in spacetime, it makes a difference what I call 𝑥 axis in some other
point—the only allowed transformations are then global Lorentz transformations, which
conserve the relative orientation of the tetrads. This allowed one to speak of vectors at
different spacetime points as parallel if they had the same components with regard to their
local tetrad; hence Einstein’s theory went by the name of teleparallelism. Through the
notion of teleparallelism, the tetrads thus defined a second connection (beside the usual
Levi-Civita connection one could obtain from the metric tensor alone) which could be
used to construct new tensors and invariants, which could in turn be used to write down
more general field equations. Einstein believed that he could thereby construct combined
field equations for the gravitational and electromagnetic fields.

Wigner realized that, independent of these unified field theory considerations,3 given
local tetrads one could give a unique prescription for the construction of the 𝛾 matrices in
curved spacetime as

3As we shall see, this is just one instance of the close connection between developments in unified field
theory and the Dirac equation in curved space-time. For a detailed discussion from the viewpoint of the
history of unified theory, see Goenner (2004).
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𝛾𝜇 = ̃𝛾𝑎𝜂𝑎𝑏ℎ𝑏
𝜇 (5.4)

where the ̃𝛾 are the usual (constant) Diracmatrices; theDiracmatrices on curved spacetime
𝛾 can then easily be shown to obey the correct anti-commutation relations. The open
question was then: Given the Dirac matrices in curved spacetime, how were they to be
incorporated into the Dirac equation? Both Tetrode andWigner had tried this, but they had
mainly concerned themselves with the question of how space-time dependent 𝛾 matrices
were to be integrated into the Dirac equation, which of course contained derivatives with
respect to space and time. The general covariance of the wave equations they ended up
with was, however, very questionable. This question was soon taken up by Vladimir Fock,
initially in collaboration with Dimitri Ivanenko.

Fock’s main innovation was introducing the notion of the covariant derivative of
a spinor, which allowed for a manifestly covariant Dirac equation in curved spacetime
(Chapter 11). The connection appearing in the covariant spinor derivative was determined
by the Dirac matrices in curved spacetime, which in turn were determined by the tetrads.
But Fock could show that his Dirac equation was indeed covariant under local Lorentz
transformations, that is, that the choice of tetrads (beyond what was determined by the
metric) played no physical role. The tetrads were thus demoted to mere mathematical
tools, in contrast with the physical role they had played in Einstein’s teleparallelism.

A very similar approach was developed independently by Hermann Weyl (Chap-
ter 12).4 But Weyl’s approach differed fundamentally from Fock’s in its perceived goal.
Fock came from quantum theory and viewed his work as an extension of Dirac’s theory
to the case of curved spacetime. Weyl, on the other hand, is a representative of the view-
point, which we already encountered in the work of de Donder and the early Klein, that
general relativity might help in solving foundational issues in quantum mechanics. For
while the original problems of motivating the quantization procedure or interpreting the
wave function had largely been set aside by 1929 (the year of Weyl’s and Fock’s work),
the Dirac equation brought with it new fundamental difficulties, most notably the problem
of the negative energy states.

Weyl attempted to solve this difficulty by replacing the four-spinors of Dirac with
the two-spinors that now carry Weyl’s name. This removed the negative energy solutions,
but at the same time also prevented the inclusion of the usual explicit mass term in the
wave equation. Weyl expressed the rather vague hope that the mass might arise through
the coupling to a gravitational field and, to this end, constructed an essentially classical
field theory of coupled spinor, gravitational and electromagnetic fields, which, just like
Klein’s five-dimensional field theory two years earlier, was eventually supposed to be
quantized. In order to couple the spinors to the gravitational field, he introduced the same
tetrad-based covariant spinor derivative that Fock had constructed. For the coupling of
the spinors to the electromagnetic field, he discovered, almost in passing, the local gauge
invariance of the Dirac equation, which he not only related to, but in fact tried to deduce
from local Lorentz invariance.

The work of Weyl and Fock was received in two distinct ways: Some, coming to the
problem from general relativity, attempted to further pursue the solution of the negative
energy problem along these lines, most notably Jan Schouten, who attempted to show
how a mass term for Weyl spinors might arise in five- instead of four-dimensional curved
spacetime (Schouten 1931). In the quantum community, on the other hand, the work of
4For a detailed discussion of Weyl’s, and also Fock’s, work and its context, see Scholz (2005).
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Weyl and Fock was viewed as the classical basis for a relativistic quantum field theory
of gravitation, electromagnetism and charged Dirac particles, and an attempt to quantize
it was undertaken almost immediately by Léon Rosenfeld (see the following part of this
book). It was important for this undertaking that Weyl and Fock had not only shown
how to couple spinor waves to a gravitational field, but had also identified the degrees of
freedom in general relativity that were supposed to be subjected to quantization in such a
coupled theory, the tetrads.

In 1932, Schrödinger showed that this was not the unique way of integrating spinors
into general relativity. He took the spacetime dependent Dirac matrices as fundamen-
tal degrees of freedom, instead of the tetrads (Chapter 13). This brought the question of
which basis to choose for the Dirac matrices back onto the table: In the tetrad prescription,
equation 5.4, one simply had to initially pick some basis for the constant Dirac matrices;
everything else then followed from the tetrads and their transformation properties. But if
the 𝛾 matrices themselves were supposed to be the dynamical variables, no direct refer-
ence could be made to the constant matrices. Schrödinger thus imposed further hermiticity
conditions, which defined the space-time dependent Dirac matrices, given a metric, up to
a unitary transformation in spin space. These unitary transformations were not only, as
Schrödinger put it, “benign and irrelevant,” they also corresponded exactly to the local
Lorentz transformations in the Weyl-Fock tetrad formalism. What had thus, using tetrads,
looked like the rotation of local coordinate axes, in Schrödinger’s formalism was inter-
preted as a (local) transformation in spin space. This latter point, in particular, was soon
after further worked out by Bargmann (1932) and Pauli (1933).

A further alternative was worked out by Bartel van der Waerden and Leopold Infeld
(Chapter 14), based on a generalization of van derWaerden’s special relativistic spinor cal-
culus (Waerden 1929).5 They defined, instead of the local coordinate basis of the tetrad
formalism, local spinor spaces. The separation between local spin space transformations
and coordinate transformations was thus now taken as the starting point, rather than as
a result of the analysis. As in special relativistic spinor calculus, where vectors are con-
structed from spinors through the Pauli matrices, the connection between spinor space and
spacetime was established through a set of local, spacetime dependent generalized Pauli
matrices. These matrices replaced the metric as fundamental degrees of freedom. They
were thus the two-spinor analog of Schrödinger’s spacetime dependent Dirac matrices.
In a sense, Infeld/van der Waerden was to Schrödinger as Weyl was to Fock: The same
general idea, but with two-spinors instead of four-spinors. Van der Waerden viewed his
formalism as a considerable simplification of Schrödinger’s four-dimensional framework,
since one no longer needed to employ hermiticity conditions in order to fix the dynamical
matrix degrees of freedom.6

Both the Schrödinger and the Infeld-van der Waerden formalism had to wait quite a
while until they were put to use. Even though Pauli immediately suggested to Rosenfeld
that he should repeat his analysis of 1930, this time quantizing the Dirac matrices instead
of tetrads,7 Schrödinger’s reformulation was, to the best of my knowledge, not used as the
basis for a quantization of gravity until Bryce deWitt’s thesis work in the late 1940s. And,
still in 1951,8 Schrödinger remarked to Fredrik Belinfante: “I do not set any store in my
paper of 1932 on Dirac’s theory in a general metric. It was at the time a smart exercise,

5For a detailed study of van der Waerden’s work in physics, including this paper, see Schneider (2010).
6See the letter from van der Waerden to Schrödinger, 14 June 1932, Schrödinger papers, Vienna University
Library.
7Letter from Pauli to Rosenfeld, 25 November 1932, reprinted in Meyenn (1993).
8Letter from Schrödinger to Belinfante, 16 March 1951, Archive for the History of Quantum Physics.
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but it came to nothing.” Van der Waerden was equally dismissive of his work. His formal-
ism had to wait even longer, until the late 1950s, before it was widely received, mainly,
however, in the context of mathematical relativity, rather than as a basis for quantization.9

In any case, by the early 1930s it appeared that the classical field theory of relativistic
quantum matter interacting with the gravitational field had been worked out, in several
closely related mathematical formulations. The core difficulties were seen to lie in the
quantization procedure, which, already for the simpler case of electrodynamic interactions,
led to uninterpretable infinities in the higher orders of perturbation theory.

In 1938, however, a study by Einstein, Infeld, and Banesh Hoffmann (EIH) appeared,
which appeared to indicate that there were serious advantages to starting with a classical
theory of matter as point particles, in contradiction, ironically, with Einstein’s program of
a unified field theory (Chapter 15). EIH could show that if one treated matter particles
as singularities in the gravitational field , one could (in stepwise approximations) derive
the equations of motion for these singularities from the field equations alone, without
having to additionally postulate the geodesic equations for particle motion. The prospect
of carrying this feature of general relativity over to the quantum theory made a classical
theory of point particles (rather than a classical theory of matter waves to be second-
quantized) an attractive starting point for a quantum theory of gravitation. This approach
was taken by Peter Bergmann, as will be discussed in the final part of this book.

Several different possible starting points for a quantization of gravity, that is, a mod-
ification of general relativity according to the principles of quantum theory, had thus been
set. But the inverse program, the modification of quantum theory following considera-
tions from general relativity, was not dead. As we have seen, this program by the late
1920s mainly centered around the idea that the inclusion of general relativity might some-
how determine the mass of the elementary particles, which were after all purely empirical
parameters in the wave equations of quantum mechanics and field theory.

A variant of this idea, which brought in ideas from relativistic cosmology, had been
formulated early on by Arthur Eddington (1923). He hypothesized that the radius of the
electron (proportional to the inverse mass) should be related (in fact proportional) to the
curvature radius 𝑅 of the universe as a whole, still viewed at the time as static and spher-
ical (an Einstein universe). Eddington further elaborated on this idea 13 years later in
the context of his notorious and oft-ridiculed relativistic theory of protons and electrons
(Eddington 1936),10 obtaining the necessarily huge proportionality constant through the
square root of the number 𝑁 of electrons (or protons) in the entire universe.

While this work was almost universally regarded as obscure and incomprehensible,
some of the general ideas concerning the relation between cosmology and elementary
particles were taken up by Erwin Schrödinger.11 Schrödinger saw some promise in Ed-
dington’s new work, inasmuch as it was a specification of the original idea of connecting
the electron mass with cosmology, now also incorporating the tools of wave mechanics.
In particular, Eddington had derived the rest mass energy of an elementary particle as the
energy of the first excited state for the system of all the identical fermions in the universe.
The curvature radius of the universe entered through the boundary conditions for the wave
equation, the total number of particles in the universe through the fact that one was look-
ing at energies near the Fermi surface. In a stripped-down version, which Schrödinger

9See, in particular, Penrose (1960).
10For a benevolent and insightful reading of this book, see Kilmister (1994). For more on the historical
background, see Kragh (2015).
11For more on this work in the context of Schrödinger’s work on cosmology more generally, see Urbantke
(1992).
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presented at the Galvani Bicentennial in 1937 (Schrödinger 1938b) and which made no
more reference to the more eccentric aspects of Eddington’s theory (such as the attempt
to prove that the fine structure constant was necessarily the reciprocal of an integer),12 the
central relation read:

𝑚𝑐2 = ⋯ ℎ𝑐√𝑁
𝑅 , (5.5)

where the dots refer to undetermined constants. In order to obtain such a relation from
the accepted wave mechanics, rather than from Eddington’s novel theory, Schrödinger
devoted considerable energy to the explicit construction of the solutions of the Maxwell
and Dirac equations in a spherical universe (Schrödinger 1938a), also studying the non-
static, expanding case, which was by that time heavily favored (Schrödinger 1940). But
after three years of working on this subject, he had to conclude in a small note that one
would, starting from very general assumptions, always obtain the cubic root of 𝑁 in Ed-
dington’s relation, instead of the square root, and thus obtain much too small masses for
the elementary particles (Chapter 16).

The idea that general relativity, in particular relativistic cosmology, might directly
determine the microscopic quantum wave equations thus remained nothing more than a
tantalizing possibility. In contrast, the program of quantizing the gravitational field, while
technically challenging, seemed a fairly straightforward task. In this section, we have
discussed the necessary groundwork for this task, that is, the establishment of classical
theories of matter interacting with the gravitational field that went beyond the very unspe-
cific energy-momentum tensor of matter appearing in the Einstein equations. In the next
section, we will discuss the first attempts at an actual quantization of such theories.
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Chapter 17
Without New Difficulties: Quantum Gravity and the Crisis of the
Quantum Field Theory Program
Alexander Blum

In the years 1926–1928, immediately following the creation of matrix and wave mechan-
ics, the protagonists of this development elaborated and expanded the techniques of the
new quantum mechanics, so as to apply them to field theories.1 This work culminated in
the theory of interacting quantum electrodynamics (QED),2 published in 1929 by Werner
Heisenberg and Wolfgang Pauli (Heisenberg and Pauli 1929a). This paper, which deals
mainly with the canonical quantization of both the electromagnetic and the matter-wave
fields, famously contains a brief nod to gravitational theory, which is nowadays often
quoted jokingly due to its seemingly naive optimism:

We further note that a quantization of the gravitational field, which appears to
be necessary for physical reasons, should be also possible using a formalism
entirely equivalent to the one used here without new difficulties. (Heisenberg
and Pauli 1929a, 3)

Now this quote doesn’t sound half as optimistic if the emphasis is put on new. For
the theory of quantum electrodynamics which Heisenberg and Pauli had just constructed
was replete with difficulties. Three of these difficulties will play an essential role in our
story:

1. The theory led to divergent expressions for the energies of stationary states. Even
worse, J. Robert Oppenheimer, who was working with Pauli in Zurich at the time,
could also show that the differences between these energies (i.e., the actually ob-
served frequencies of spectral lines) came out infinite (Oppenheimer 1930).

2. In order to write down a Lorentz-invariant Lagrangian for the interacting electro-
magnetic and matter-wave fields, it was necessary to work with the electromag-
netic potentials 𝜙 and not just with the fields. But the Lagrangian does not contain
then a time derivative of the electric potential 𝜙0, so that there is no corresponding
canonical momentum variable, preventing the straightforward implementation of
canonical commutation relations.

3. The theory was not manifestly covariant due to the use of equal-time commutation
relations. These allowed for a close analogy with the canonical commutation re-
lations of non-relativistic quantum mechanics, but, by singling out time, destroyed

1For the early history of quantum field theory, see, e.g., Cini (1982); Darrigol (1982; 1986) and the first two
chapters of Schweber (1994). The difficulties of early quantum field theory are discussed in Rueger (1992).
An overview that places the development of quantum field theory in the larger context of the development of
quantum mechanics can be found in a chapter by Christoph Lehner and the author in a forthcoming volume
on the genesis of quantum mechanics.
2As opposed to free quantum electrodynamics on the one hand (Jordan and Pauli 1928), and quantum
radiation theory, i.e., a theory of transverse photons, on the other (Dirac 1927).
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manifest covariance. The Lorentz invariance of the theory thus had to be (and was)
proven in a rather roundabout manner.

All three difficulties also played an important role in early work on the quantization
of the gravitational field. I will be referring to these three difficulties as the divergence,
themomentum, and the quantization difficulty, respectively. I will begin by discussing the
momentum difficulty.

This difficulty was initially solved by Heisenberg and Pauli by adding to the La-
grangian additional terms, which contained a time derivative of 𝜙0 and were proportional
to a parameter 𝜖, which was supposed to be set to zero in the final expressions for physical
quantities. This procedure was viewed as rather artificial from the start. Heisenberg, who
had cooked up themethod,3 described it as a “very crude trick.”4 Heisenberg consequently
devised a new method for Heisenberg and Pauli’s second paper on QED (Heisenberg and
Pauli 1929b).5 This method relied on the notion of the gauge invariance of the theory
of coupled electromagnetic potentials and Dirac matter waves 𝜓 , which Weyl had only
recently introduced (see the preceding part), that is, the invariance under a substitution

𝜓(𝑥) → 𝑒− 𝑖𝑒
ℏ𝑐 𝜒(𝑥)𝜓(𝑥)

𝜙𝛼(𝑥) → 𝜙𝛼(𝑥) + 𝜕𝜒(𝑥)
𝜕𝑥𝛼

, (17.1)

where 𝜒(𝑥) is an arbitrary space-time function. Heisenberg’s idea was the following:
The field 𝜙0 was simply not quantized, thereby eliminating the need for a canonically
conjugate momentum variable in order to construct the canonical commutation relation.
𝜙0 was then simply a (c-number) function of space-time and could be set to zero, due to
the well-known underdetermination of the electromagnetic potential. This brought with
it a new difficulty, however: With 𝜙0 set to zero, the equation of motion for 𝜙0 (which
is simply the first Maxwell equation, or Coulomb’s law, div�⃗� = 𝜌) no longer resulted
from the variation of the Lagrangian and the dynamical problem was underdetermined.
The equation of motion could also not simply be added as an operator identity, because
it would imply non-vanishing commutation relations between matter and electromagnetic
field operators, in contradiction with the canonical commutation relations.

Heisenberg now realized that one had not exploited the full gauge invariance by set-
ting 𝜙0 = 0. There was still a residual gauge symmetry, since if the function 𝜒 doesn’t
depend on time 𝑥0, the transformation 17.1 leaves 𝜙0 unaltered. To this residual symmetry
now corresponded an operator that commutes with the Hamiltonian, that is, a conserved
physical quantity. The conserved quantity corresponding to the residual gauge symmetry
turned out to be

𝐶 = div�⃗� − 𝜌. (17.2)

One could thus first solve the dynamical problem without the first Maxwell equation and
then pick those solutions for which𝐶 = 0, that is, for which the firstMaxwell equationwas
3See a letter from Pauli to Niels Bohr, 16 January 1929. All the Pauli letters from the 1920s are reprinted
in Hermann, Meyenn, and Weisskopf (1979). All translations are by me.
4Heisenberg to Jordan, 22 January 1929, Archive for the History of Quantum Physics, MF 18, Section
002–024.
5See also a letter from Heisenberg to Pauli, 20 July 1929.
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fulfilled at some initial time. There was thus a Nebenbedingung (subsidiary condition) on
the initial quantum state 𝜑, which had to fulfill the equation 𝐶𝜑 = 0. Since 𝐶 commutes
with the Hamiltonian, this condition on the initial state would propagate, and the first
Maxwell equation would always be fulfilled, without actually being an operator identity.

The central difficulty with this new method was the apparent lack of Lorentz invari-
ance: There was now no commutation relation for the zero component of the electromag-
netic potential four-vector, and hence the commutation relations were no longer covariant
—this was in addition to the difficulty of the equal-time commutators, that is, the quan-
tization difficulty. Heisenberg and Pauli convinced themselves that “all statements about
gauge invariant quantities […] fulfill the demand of relativistic invariance,” but the proof
they presented was highly problematic.6

This was the state of affairs for the momentum difficulty, when Pauli finally turned
to the quantization of gravity. The immediate stimulus appears to have been the reading
of Weyl’s paper on the interacting theory of Dirac matter waves, electromagnetic poten-
tials and the gravitational field (Chapter 12).7 He dismissed Weyl’s attempt to solve the
problem of the negative energy states by using masslessWeyl two-spinors instead of Dirac
spinors, especially because he did not share Weyl’s hope that gravitational effects might
be able to generate the mass term:

The hope of finding a replacement for the mass term in gravitational theory
appears illusory to me; the gravitational effects will always be much too small
numerically. (Hermann, Meyenn, and Weisskopf 1979, 519)

But Pauli realized that Weyl’s general scheme of coupling spinors to a curved space-time
metric, by expressing the latter in terms of tetrads, would also work for regular, massive
Dirac four-spinors.8 Reformulated in this manner, Weyl’s field theory provided a natural
extension of the field theory of interacting matter and electromagnetic waves that Heisen-
berg and Pauli had quantized for their QED. It thereby provided the obvious starting point
for extending and completing their work by also including the gravitational field. Pauli
concluded his remarks on Weyl’s paper by stating:

What now interests me most, is the question of how to quantize the e(𝛼) [the
tetrads] themselves in your gravitational theory. (Hermann, Meyenn, and
Weisskopf 1979, 520)

This was the question which he set his assistant Léon Rosenfeld. Rosenfeld soon
discovered that one encountered problems akin to the momentum difficulty of QED.9 For
example, the canonical momenta for the time-components of the four tetrad basis vectors
identically vanished. In further pursuing this question, Rosenfeld obtained several inter-
esting results, which he published in a lengthy paper in 1930 (Chapter 18).10 First of all,

6Dirac in a letter to Rosenfeld from 6 May 1932 (Niels Bohr Archive, Copenhagen) (under)stated that he
found it “difficult to understand,” and Rosenfeld concurred on 10 May (Dirac Papers, Churchill College,
Cambridge) that Dirac was “right in not understanding” the “highly doubtful sentence” with which Heisen-
berg and Pauli concluded their proof.
7Letter from Pauli to Weyl, 26 August 1929.
8This is of course what Fock had already done. But Pauli was not aware of Fock’s work until somewhat
later. See a letter to Ehrenfest from 29 September 1929.
9Letter from Pauli to Jordan, 30 November 1929.
10For a detailed discussion of this work, in particular with regard to its relation with later work on constrained
Hamiltonian dynamics, see Salisbury (2009).
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he was able to demonstrate in general that the momentum-type difficulties were the result
of the invariance of the Lagrangian with regard to certain groups, the gauge group for the
case of electrodynamics, the group of general coordinate transformations for general rela-
tivity, and the local Lorentz symmetry of the tetrad formulation. He then went on to devise
a general method for dealing with such difficulties, a method which also managed to by-
pass the difficulties of Lorentz covariance encountered in the (second) Heisenberg-Pauli
scheme.

In order to sketch Rosenfeld’s method, I will focus on the simple case of QED, which
is the only example he really worked out to the end. The general idea was to also introduce
canonical commutation relations for, and thereby to quantize, the electric potential 𝜙0:
Rosenfeld simply assumed that there existed a momentum operator 𝔓4 that did in fact
obey the canonical commutation relation with the electric potential. In order to do this
two points needed to be addressed.

First, this meant that the Hamiltonian𝐻 would contain a term ̇𝜙0𝔓4. In order to have
the Hamiltonian expressed solely in terms of the canonical variables, one would have to
express ̇𝜙0 in terms of the canonical momenta (and the canonical coordinates, that is, the
components of the potential). But the original Lagrangian did not depend on ̇𝜙0, and
consequently ̇𝜙0 did not show up in the expressions relating the time derivatives of the
field and the canonical momenta. This implied that ̇𝜙0 could be an arbitrary function of
space and time without contradicting the defining equations for the canonical momenta.
Rosenfeld thus set ̇𝜙0 in the Hamiltonian equal to an arbitrary function 𝜆(𝑥), which then
consequently showed up in the equations of motion for the four-potential. In particular
the equation of motion for the electric potential was simply of the form ̇𝜙0 = 𝜆, ensuring
the self-consistency of the approach. A specification of 𝜆 then corresponded to choosing
a gauge.

The second point was that one still needed to take account of the fact that the mo-
mentum conjugate to the electric potential was actually zero. Rosenfeld introduced a
Heisenberg-Pauli type Nebenbedingung on the state, demanding that 𝔓4𝜑 = 0. And
in order to have this condition propagate in time, an additional condition needed to be
imposed

0 = �̇�4𝜑 = 𝑖
ℏ𝑐 [𝐻, 𝔓4] 𝜑 = 𝑖

ℏ𝑐 𝐶𝜑 (17.3)

One thus obtained the same Nebenbedingung that Heisenberg and Pauli had imposed,
ensuring the validity of Coulomb’s law. No further conditions were necessary, since 𝐶
was a constant, as Heisenberg and Pauli had already shown.

Since Rosenfeld’s scheme was essentially equivalent to the Heisenberg-Pauli method
for the specific choice 𝜆 = 0 (although it should be noted that it was not actually necessary
to specify 𝜆 at all), Rosenfeld’s work in the context of QED could simply be viewed as a
proof of the covariance of that method, and this is how he later presented it,11 resorting to
the simpler Heisenberg-Pauli method for actual calculations (Rosenfeld 1932).

In any case, it was a whole different approach that came to be the standard method
in the QED of the 1930s and 1940s, due to Enrico Fermi, which was based on taking the
(Lorenz) gauge condition (as opposed to Coulomb’s law) and its time derivative as condi-

11Letter to Dirac, 21 May 1932, Dirac Papers, Churchill College, Cambridge.
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tions on the wave function (Fermi 1932).12 It involved the use of a modified Lagrangian
that was not gauge invariant and only returned the Maxwell equations if the Lorenz gauge
was imposed. Rosenfeld argued against the Fermi approach in his paper, on account of its
lacking gauge covariance, demonstrating that his own method was in fact gauge covari-
ant. But this was not a very strong argument at the time, and also Rosenfeld could field
no arguments as to why one should attach much weight to gauge covariance in the first
place.

How then did Rosenfeld’s method fare in the context of gravitation? It did indeed
prove applicable, in particular because it was generalizable to the case where the con-
straints on the canonical momenta were more complicated than the mere vanishing of
some of the components, as was the case for the constraints arising from the local Lorentz
covariance of the tetrad formalism. But he stopped short of actually constructing a canon-
ical Hamiltonian for the Weyl-Fock field theory. For this, he would have had to solve the
equations defining the canonical momenta for the time derivatives of the fields (i.e., of the
tetrads), in order to end up with a Hamiltonian that only contained canonical coordinates
and momenta, as well as the arbitrary functions of the type 𝜆.

Why did Rosenfeld not do this? This question remains unanswered. Years later,
Pauli remarked that Rosenfeld’s work was “not satisfactory in all aspects, because he had
to introduce certain additional conditions, which no one could really understand.”13 It
is entirely unclear, however, what Pauli was referring to. Rosenfeld’s work remained
for the next two decades an anomaly, until the late 1940s, when the systematic study of
constrained Hamiltonian dynamics picked up steam, and several of Rosenfeld’s results
were re-discovered, as will be discussed in the final part of this book. One additional,
simple result of Rosenfeld’s, unrelated to the momentum difficulty, has stood the test of
time: The necessity of quantizing the gravitational field with commutators, that is, the
realization that gravitons must be bosons. Ten years before Pauli’s formulation of the
spin-statistics theorem, this was a non-trivial result.

One thing is certain: Solving the momentum relations for the time derivatives of the
fields is a complicated business. This would not be the last instance of physicists con-
vincing themselves that methods from QED also worked for gravity in principle, without
filling in the details. In any case, it turned out to be unnecessary for Rosenfeld’s second
work on the quantum theory of gravity, which he completed in the same year (Chapter 19).
This second paper, much more than the first, which certainly started out as an attempt to
quantize gravity, is an attempt to better understand the difficulties of QED by studying
whether similar difficulties appeared in other quantum field theories. The difficulty in
question here was the first difficulty mentioned above, the divergence difficulty, to which
we will now turn.

It was initially unclear whether the divergence of the self-energy of the electron in
QED was simply an inheritance from the classical theory, where it was well-known that
the notion of a point electron was highly problematic, due to the infinite electromagnetic
mass associated with such an object. Supposedly Heisenberg had suggested14 that one

12It should be noted that Fermi himself actually gave no indications as to how exactly the gauge condition
should be interpreted in his original work (Fermi 1929). It was only Heisenberg and Pauli who interpreted it
as a condition on the state, akin to their own Nebenbedingung, an interpretation which Fermi then adopted.
13…nicht in jeder Hinsicht befriedigend war, da er gewisse zusätzliche Bedingungen einführen musste, die
niemand richtig verstehen konnte. Letter to Oskar Klein, 25 January 1955, reprinted in Meyenn (2001).
14When and where is uncertain. Pauli in a letter to Rosenfeld (19 September 1930, but reprinted in Meyenn
(1993)) speculates that it might have been during discussions in Copenhagen, but Heisenberg did not actually
attend the 1929 spring conference in Copenhagen (8–15 April, see the timeline in Hermann, Meyenn, and
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should study the case of the gravitational self-energy of the photon, since there were no
singularities in the corresponding classical theory of an electromagnetic wave interacting
with the gravitational field. In any case, Pauli egged Rosenfeld on to pursue this prob-
lem.15

The electromagnetic self-energy of the electron had been calculated perturbatively,
expanding in terms of the coupling constant, the electron charge 𝑒. The divergent ex-
pression then arose at second order in perturbation theory. Consequently, Rosenfeld per-
formed his calculation of the gravitational self-energy of the photon in the approximation
of a weak gravitational field. Such an approximation had, of course, been worked out
by Einstein immediately after the formulation of general relativity (see the first part of
this book). Einstein had started from the assumptions that the deviations 𝛾𝜇𝜈 from the flat
space-time metric were numerically small (compared to the elements of the flat space-
time metric itself, which are of order 1). Rosenfeld now factored out a co-efficient 𝜖, the
square root of Einstein’s gravitational constant, the deviations from the flat space-time
metric thus now being of the form 𝜖𝛾𝜇𝜈 , Rosenfeld’s 𝛾 now being a dimensionful quantity.
This explicitly made Einstein’s approximation equivalent to an expansion in terms of the
gravitational coupling constant.

As Einstein had further remarked, solving the field equations of general relativity
in this approximation was basically equivalent to calculating retarded potentials in elec-
trodynamics. This also meant that all the techniques developed for QED could be taken
over to the quantization of (linearized) gravity in a very straightforward manner. In par-
ticular, there was no need for Rosenfeld’s new method of dealing with the momentum
difficulty.16 The Fermi method could be taken over from QED and applied directly to
gravity, the Lorenz gauge condition being replaced by the analogous coordinate condition
imposed by Einstein

𝜕𝛾′
𝜇𝜈

𝜕𝑥𝜈 = 0 (17.4)

where 𝛾′
𝜇𝜈 is the trace-reverse of 𝛾𝜇𝜈 . Following Fermi, Rosenfeld constructed a La-

grangian which was not simply the linearized Einstein-Hilbert Lagrangian, and hence
not even approximately invariant under general coordinate transformations. The most
straightforward way to arrive at the Rosenfeld Lagrangian is to linearize the first-order
Einstein-Hilbert Lagrangian, impose the above coordinate condition and then drop a total
divergence. Rosenfeld presented no derivation of his Lagrangian, the only important point
being that it returned the correct linearized field equations.

In this framework, Rosenfeld then calculated (to second order in 𝜖) the gravitational
field energy in the absence of free gravitons, where the operator 𝛾𝜇𝜈 can be expressed solely
in terms of the electromagnetic field operators. He obtained two divergent terms, one
constant and one proportional to the number of photons. The second term was interpreted
as the gravitational field energy of a photon, and its divergent nature was subsequently

Weisskopf (1979)), since he was on his world tour (from which he only returned in November, see the
timeline in Cassidy (1992)).
15Interview of Léon Rosenfeld by Thomas Kuhn and John Heilbron, Niels Bohr Library and
Archives, American Institute of Physics, College Park, MD, USA, https://www.aip.org/history-programs/
niels-bohr-library/oral-histories/4847-2 (accessed 21 July 2017).
16It of course also needs to be noted that there was no need to introduce the tetrads in this case, since no
spinorial matter was involved.

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4847-2
https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4847-2
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cited as proof for the quantum nature of the self-energy divergence, independent of the
presence of singularities in the corresponding classical theory.

There remained the suspicion that this divergent energy was merely the coupling of
the gravitational field to the infinite zero-point energy of the electromagnetic field. This
question was investigated soon after by Jacques Solomon, who redid Rosenfeld’s calcula-
tion after first eliminating the zero-point energy in the Hamiltonian of the electromagnetic
field by imposing normal ordering on the annihilation and creation operators (Solomon
1931). Solomon showed that while the constant divergent term was eliminated in this
manner, the photon self-energy remained divergent. But he had only imposed normal or-
dering on the level of the electromagnetic Hamiltonian and this normal ordering did not
survive when calculating the energy of the gravitational field. I therefore think that it can
still be argued that Rosenfeld’s divergence was merely the result of the coupling to the
zero-point energy.

In any case, when Rosenfeld’s calculation was redone again by Bryce deWitt (né
Seligman) in his unpublished PhD thesis (DeWitt 1949), now using modern covariant
techniques, he obtained a vanishing photon self-energy, as should be expected from con-
siderations of gauge invariance alone. DeWitt gave no real argument as to where Rosen-
feld had gone wrong, which is quite understandable considering that almost all the calcu-
lations from the 1930s were considered obsolete when renormalized quantum field theory
was developed in the late 1940s.

The question of the photon self-energy aside, Rosenfeldwas still interested in the gen-
eral question of the quantization of gravity and supplemented his paper with a section on
the quantization of the linearized gravitational field also for the case of free gravitons. His
treatment was, however, quite sketchy. Bypassing the canonical commutation relations,
Rosenfeld went straight to an explicit expression for the operator 𝛾𝜇𝜈 in terms of gravi-
ton annihilation and creation operators, by expanding in terms of transverse gravitational
wave solutions of the free field equation. These transverse waves had been identified by
Einstein as the only physical gravitational waves, carrying energy and propagating with
the speed of light. Rosenfeld concluded with a brief look at graviton-photon scattering in
this linear quantum theory of gravity.

The quantization of linearized GR wasn’t worked out in detail until 6 years later, in
the PhD work of Soviet physicist Matvei Bronstein (Chapter 20).17 It is unclear whether
he was aware of Rosenfeld’s work,18 but he did not really need to build on it. Bronstein
had an independent program of formulating linearized GR as close to electrodynamics as
possible, with 𝛾𝜇𝜈 treated as a regular field in flat Minkowski space-time (as opposed to
as a deviation from the flat space-time metric). He could then straightforwardly apply the
canonical, equal-time field quantization procedure developed by Heisenberg and Pauli for
QED (along with the Fermi method for dealing with the coordinate condition, which Bron-
stein now explicitly identified as a gauge condition) to all components of the linearized
gravitational field, not only to those that corresponded to freely propagating waves.

These additional components became important when treating the interaction with
matter. Here, Bronstein built on Fock’s work, expressing Fock’s generally relativistic
Dirac equation, and in particular the tetrads, in terms of the 𝛾𝜇𝜈 . Bronstein could thereby
not only calculate the emission and absorption coefficients for transverse gravitons, but

17On Bronstein’s life and scientific work, see Gorelik and Frenkel (1994).
18 He was certainly aware of Rosenfeld’s first paper: During Bronstein’s thesis defense (the protocol is
reprinted in Kobzarev (1985, 317–320)), Igor Tamm recommended that he make reference to it, which
he did in the published Russian paper. Rosenfeld’s second paper on linearized gravity is, however, never
mentioned.
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also show how the non-transverse gravitons led to a Newtonian gravitational interaction
between electrons, in the same way that the longitudinal (and time-like) photons of QED
led to the Coulomb interaction.

But Bronstein’s work is less known for his detailed treatment of the quantum theory of
linearized gravity, and more for his musings on the full quantum theory of gravity. Bron-
stein transferred Bohr and Rosenfeld’s analysis of the measurability of field quantities in
QED (Bohr and Rosenfeld 1933) to quantum gravity. Bohr and Rosenfeld had concluded
that there were no further restrictions on the measurability of the electromagnetic field be-
side those arising from the canonical uncertainty relations, just as in quantum mechanics.
This conclusion had centrally rested on the assumption that the test body used to measure
the field was macroscopic (i.e., its atomistic nature could be disregarded) and could be
given an arbitrarily high charge density. Bronstein argued that, although the close relation
between QED and the quantum theory of gravity allowed adapting almost the entire Bohr-
Rosenfeld analysis, the final conclusion would be different, because general relativity did
not allow for arbitrarily dense bodies. Rather, there was a fundamental limit from the fact
that a body could not become smaller than its gravitational (Schwarzschild) radius. There
were thus absolute limits on the measurability of the gravitational field and a quantum
theory of gravity would require major conceptual changes.

Now Bronstein’s reasoning clearly shows great physical intuition. He was the first
to realize the essential difficulties inherent in constructing a quantum theory of gravity
and that such a theory was not to be had without fundamental conceptual innovations. His
argument is fielded to this day as an elementary demonstration of the problem that is quan-
tum gravity. Why then was Bronstein’s argument hardly received by his contemporaries?
To understand why it didn’t make much of a splash at the time, one needs to look at its
weaknesses in somewhat more detail.

One objection was already raised at Bronstein’s thesis defense by Wladimir Fock:19
The absence of a fundamental restriction on the charge density was hardly a desirable fea-
ture of quantum electrodynamics. Rather, it allowed for a theory such as QED with point
charges that had an apparently infinite charge density, resulting in the divergence diffi-
culties discussed above. Physicists at the time were thus much more inclined to believe
that revisions in the concepts of space and time would come from a reformed (quantum)
electrodynamics, where a quantity of the order of the classical electron radius would play
an essential role. The radical changes that Bronstein was envisioning were thus expected
to come in at much larger length scales. It was only when the difficulties of QED (and
then also of nuclear physics) had been solved—without radical changes in the underlying
space-time theory—that Bronstein’s arguments could be viewed as convincing.20

But there is a more intrinsic difficulty in Bronstein’s argument as well. The aim of
the Bohr-Rosenfeld analysis had been to take the established mathematical framework of
QED and prove that it was internally consistent, that is, that there were no fundamental
limitations on the observability of the electromagnetic field components, which would
have been in contradiction with the initial choice of these components as the dynamical
(quantum) variables. The Bohr-Rosenfeld analysis was thus a procedure to be applied
to an already formulated quantum theory, in order to see whether it contained inherent

19The protocol of the defense has been published in Russian, see Footnote 18.
20Gorelik and Frenkel are somewhat dismissive of Fock’s objection, because they focus too narrowly on
a specific attempt at introducing the electron radius into electrodynamics, the Born-Infeld theory, as did
Bronstein in his reply to Fock. However, Fock explicitly stated that “the generalzation [of electrodynamics]
to a non-linear theory is only beginning” (Kobzarev 1985, 318). Hewas thus referring to the general program
and not merely to its specific, and problematic, implementation by Born and Infeld.



17. Quantum Gravity and QFT 263

contradictions. Consequently, in the original Russian article based on his thesis (Bronstein
1936), Bronstein applied this analysis to his linearized quantum gravity (which was a fully
formulated quantum field theory), and not to an as yet hypothetical full quantum theory of
gravity. He then voiced the hope that his argument would also carry over to the full theory,
even though his analysis could not be applied to it, since it had not yet been formulated.

Somewhere between writing up his thesis and publishing the German-language ar-
ticle reprinted here, Bronstein must have realized that this argument was fundamentally
flawed. There was nothing in the classical, linearized theory that prevented a body from
being smaller than its gravitational radius. And so the linearized quantum theory was just
as consistent as QED. In the German article, he thus presented the Bohr-Rosenfeld ar-
gument as an argument against the coherence of a quantum field theory based on the full
non-linear theory of gravity, disregarding the obvious logical difficulty of showing the
inconsistency of a theory that didn’t even exist yet.

This criticism of Bronstein’s argument was raised by Jacques Solomon (Chapter 21),
but not without bringing forth a further argument against the possibility of constructing
a quantum field theory based on the full non-linear theory.21 Solomon’s argument was
based on a recent proof by Nathan Rosen on the non-existence of non-singular plane wave
solutions in full GR (Rosen 1937).22 Now, all quantum field theories of the time were
based on an expansion of the field quantities in plane waves. Even if Heisenberg and
Pauli’s starting point had been commutation relations for the field quantities themselves, as
soon as they went to the level of representing these field quantities as operators on a Hilbert
space, they had, as they grudgingly admitted, no choice but to expand them in plane wave
solutions of the free field equations and treat the expansion coefficients as annihilation
and creation operators on occupation number space. From the absence of plane wave
solutions, Solomon concluded that the present formalism of field quantization was not
compatible with the non-linear theory of gravitation, a weaker claim than Bronstein’s, but
one that found at least one interested listener in Pauli, as we shall see later.

But of course both Bronstein’s and Solomon’s thoughts on the difficulties of the non-
linear quantum theory of gravity could be regarded as nitpicking, as long as the difficulties
of QED (and thereby also of the quantum theory of linearized gravity) remained unsolved.
The attempts to solve these difficulties, in as far as they were difficulties of quantum field
theory in general, of course also impacted the pursuit of quantum gravity. It is well-known
that themost fundamental difficulty of QED, the divergence difficulty, was not solved until
the late 1940s. But progress was being made already in the 1930s on lesser difficulties,
in particular on the lack of manifest covariance due to the use of equal time commutators,
what I have called the quantization difficulty. In the last part of this essay, I will focus on
this third and final difficulty.

While certainly not the most pressing difficulty at the time, there were enough physi-
cists who believed that formulating quantum theory in a more overtly relativistic manner
was a worthwhile endeavor. Two important relativistic quantization procedures were de-
vised in order to replace equal-time commutators in the first half of the twentieth century.23
In both cases, Paul Dirac played an essential role. The union of relativity and quantum
theory was a leitmotif in his work from the very start, when he attempted to make Heisen-

21In the secondary literature, e.g. in Stachel (1999), Solomon’s and Bronstein’s arguments have in general
been lumped together.
22Rosen’s conditions were later seen as too strict, since he was also ruling out mere coordinate singularities
(Bondi, Pirani, and Robinson 1959).
23Not counting Feynman’s path integral, which was not applied to the case of gravitation until the mid-1950s,
see in particular Misner (1957).
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berg’s matrix mechanics relativistic by turning time into a non-commuting matrix (Dirac
1926). This was followed by the Dirac equation in 1928 (Dirac 1928) and then by several
hugely influential papers in 1932/33, in which he laid the foundations for several new,
relativistically invariant quantization techniques. We begin by discussing his 1933 paper
on “The Lagrangian in Quantum Mechanics” (Dirac 1933).

Dirac’s general idea was to formulate quantummechanics not in terms of states (wave
functions) propagating in time, but in terms of transition amplitudes from the state at one
time to the state at a later time. Dirac called these transition amplitudes “transformation
functions,” since he conceptualized them as generating canonical transformations from
the canonical coordinates at one time to those at a later time. In the final section, he also
hinted at how to generalize this idea to quantum field theory, where the initial and final
times would be replaced by an arbitrary (not necessarily space-like) three-dimensional
hypersurface of space-time, which formed the integration boundary of the classical action.
He dubbed the field theoretic amplitudes relating the canonical (field) coordinate values
on different points on this hypersurface24“generalized transformation functions.” Dirac’s
ideas, however, remained very vague and were not worked out in any detail by him.

Dirac’s idea was taken up by Paul Weiss,25 who realized that the procedure of replac-
ing initial and final times by general three-dimensional boundary hypersurfaces might
also be applicable to the canonical quantization procedure (Weiss 1936). At first sight,
the canonical quantization procedure seemed to rest essentially on the singling out of
time, since the momentum canonically conjugate to a field variable 𝜙 appearing in the
Lagrangian 𝐿 was defined as 𝜕ℒ

𝜕(𝜕𝑡𝜙)
. This was one of the reasons why Dirac had based his

sketch on the Lagrangian formalism, where the canonical momenta do not enter. Weiss
now noted that the canonical momentum could also be defined in another way. If one
reads the definition of the canonical momentum as the time component of the four-vector

𝜕ℒ
𝜕(𝜕𝜇𝜙)

, then this can be generalized by taking the canonical momentum as the component
of the four-vector orthogonal to the hypersurface forming the integration boundary of the
action, on which the values of the field variables are fixed.

Weiss initially, like Dirac, took the boundary hypersurface to be closed. So, while one
could locally determine the direction 𝑤 perpendicular to the surface and describe points
on the surface by three parameters 𝑢𝑖, this coordinate system (dubbed “natural” by Weiss)
could not be regular throughout space-time. Still, one could write down commutators for
the field operators, which were exactly of the form of the Heisenberg-Pauli equal-time
commutators, except that the arguments of the field operators were now not the three
spatial coordinates, but rather the three surface parameters 𝑢𝑖. Further, a Hamiltonian
could be constructed in the usual fashion, using the generalized canonical momenta, and
be shown to generate the “time evolution” (i.e., the evolution for increasing 𝑤) of the field
operators.

In his second, and most influential paper (Chapter 22) , Weiss could show that the
generalization of the commutation relations need not necessarily occur only at the quan-
tum level, where it smacked of an ad-hoc modification of the well-established canonical
quantization procedure. Instead, he could demonstrate that his generalized commutation
relations corresponded already at the classical level to generalized Poisson brackets, and
that his method was thus a straightforward generalization of the usual canonical quantiza-
tion method.

24They should not be called transition amplitudes, since this would imply a notion of initial and final state.
Maybe “correlation amplitudes” would be a good name.
25For a detailed discussion of Weiss’s life and work, see Rickles and Blum (2015).
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This reconceptualization brought with it a slight modification of the original method.
If the generalized Poisson brackets are supposed to be invariant under canonical trans-
formations, in particular under time evolution, as are their point-mechanical counterparts,
they can only sensibly be defined on some initial space-like hypersurface (on which then
the values of both the field variables and the canonical momenta are given). Weiss thus
dropped his original approach of having the commutation relations defined on an entire
closed hypersurface, and replaced it with commutation relations on some (initial) space-
like hypersurface, which corresponded to the classical, generalized Poisson bracket. This
quantization procedure provided a covariant generalization of the equal-time commuta-
tors that, however, still stuck closely to the canonical scheme. We will discuss its further
use in the last part of this book, which discusses the beginnings of what would come to be
known as the canonical quantization approach to quantum gravity.

The other quantization procedure that went beyond the Heisenberg-Pauli equal-time
commutators was not a direct generalization of the canonical quantization procedure, as
Weiss’s method was. At its core were not the commutation relations between canonically
conjugate field variables, but rather the commutation relations between two field variables
at arbitrary different points in space-time. Such covariant commutators had first been used
in 1928 by Jordan and Pauli for their quantization of the free electromagnetic field (Jordan
and Pauli 1928). They were constructed by expanding the electromagnetic field variables
in terms not of time-independent spatial modes, but in terms of time-dependent, propa-
gating plane waves, which were solutions of the (free) equations of motion. Imposing the
usual annihilation-creation operator commutation relations on the expansion coefficients,
and then re-summing, the covariant commutation relations were obtained.

Since the construction was based on an expansion in terms of solutions of the wave
equation, the commutation relations were automatically compatible with the equations of
motion, a necessary requirement for any equation relating the field at two time-like (or,
for the case of electrodynamics more importantly, light-like) separated points. Indeed,
the commutators themselves actually had to be (singular) solutions of the equations of
motion. This immediately became intractable once one was dealing with interacting fields
and non-linear equations of motion, which is why one year later, Pauli reverted to the use
of equal-time commutators.

Covariant commutation relations were brought back into the game by Dirac in 1932.
In an attempt to relaunch QED, he had effectively reconstructed Heisenberg-Pauli quan-
tum field theory, only now in the interaction representation (Dirac 1932). Dirac was much
ridiculed by Pauli for having merely produced an equivalent theory, despite his grandilo-
quent claims to the contrary. In a letter to Dirac of 11 September 1932,26 Pauli wrote:

Your remarks on quantum electrodynamics […] were—to put it mildly—
certainly no masterpiece. After a confused introduction, consisting of sen-
tences that were only halfway understandable because theywere only halfway
understood, you finally arrive at results for a simplified, one-dimensional ex-
ample that are identical with those obtained by applying the formalism of
Heisenberg and myself to this example. (The identity is immediately rec-
ognizable and was then calculated in too complicated a manner by Rosen-
feld.) This conclusion of your work stands in contradiction to the more or
less clearly voiced claims in the introduction that you would somehow be
able to make a better quantum electrodynamics than Heisenberg and myself.
(Hermann, Meyenn, and Weisskopf 1985, 115)

26All Pauli letters from the 1930s are reprinted in Hermann, Meyenn, and Weisskopf (1985).
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But when Dirac, together with Vladimir Fock and Boris Podolsky, actually applied
his interaction representation formulation of quantum field theory to the full electrodynam-
ics (Dirac, Fock, and Podolsky 1932), and not just to the toy example of the first paper,
Pauli realized that it had a huge advantage: All the non-trivial dynamics due to the interac-
tion between chargedmatter and electromagnetic field were relegated to the time evolution
of the state vector. In other words: Also the second inhomogeneousMaxwell equation, the
Ampère-Maxwell law, was satisfied only through the action of the field operators on the
wave function and not as an operator identity. This implied that the electromagnetic field
operators still obeyed the free field equations and consequently the covariant commutation
relations of Jordan and Pauli. On 2 June 1933, Pauli wrote to Heisenberg:

As time goes by, I find myself liking the work of Dirac, Fock and Podolsky
more and more. It is funny that there the commutation relations of vacuum
electrodynamics do not change when particles are present, even for 𝑡 ≠ 𝑡′.
(Hermann, Meyenn, and Weisskopf 1985, 167)

But the method of quantizing by imposing covariant commutation relations was still
an isolated technique, applied only to the Maxwell field, far-removed from the generality
of the canonical quantization approach, which could be applied to any classical field theory
given in Lagrangian or Hamiltonian form. It was extended in 1938 by Stueckelberg to
encompass massive scalar fields, again by explicitly expanding the field operators in terms
of solutions of the wave equation (in this case the Klein Gordon equation) (Stückelberg
1938a), and then also to massive vector (Proca) fields (Stückelberg 1938b). In 1939,
finally, Markus Fierz gave a general expression for the covariant commutation relations
for fields with arbitrary spin (Fierz 1939).27 The covariant quantization method thereby
became a full-fledged quantization method in its own right, applicable to any Lorentz-
covariant field theory.

What did this mean for the quantization of gravity? General Relativity was, of course,
not a Lorentz-invariant field theory, but as we have seen, the linearized theory could be
thought of in this manner. And indeed, Fierz together with Pauli could show that the
linearized gravitational field fit into Fierz’s scheme, namely as a massless spin 2 field
(Chapter 23).

This was a major conceptual change: Bronstein (and Rosenfeld) had started from the
full theory of general relativity and obtained a Lorentz-covariant field theory as an ap-
proximation. Pauli and Fierz now showed that one could construct the field theory of lin-
earized gravity equally well without any reference to general relativity: it was the unique
Lorentz-covariant field theory of a massless spin 2 field. Also the transformation prop-
erties of the metric perturbations 𝛾𝜇𝜈 arose, without any reference to general coordinate
transformations, as the gauge transformation properties of a massless field, a straightfor-
ward generalization of electrodynamics.

Initially, of course, this change was hardly consequential: The quantum field theory
of linearized gravity had already been worked out, and neither the use of covariant quanti-
zation methods, nor the reconceptualization in terms of a spin 2 field made any difference
to, say, Bronstein’s formulation. But it would eventually lead to a new way of thinking
about the quantum theory of non-linear gravity. Pauli, when recapitulating his work with
Fierz in his manuscript for the 1939 Solvay conference (which never took place due to the
outbreak of World War II, but is reprinted in Meyenn (1993)), was still quite pessimistic

27The context of these works is the discovery of the putative Yukawa meson in 1937, see Blum (2014).
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concerning the prospects for the non-linear theory. In particular he cited Solomon’s argu-
ment, but with an interesting twist:

It is certainly a limitation of the quantum theoretical side of these considera-
tions that one here contents oneself with the approximation in which the gen-
erally relativistic field equations are linear. This limitation is intimately con-
nected with the well-known divergence difficulties of field theory. (Meyenn
1993, 901)

No further explanation of this connection is given, but I would suggest the following
reading: In quantum electrodynamics it is the non-linear terms, that is, the terms coupling
the electromagnetic field to the charged current of the electrons, that lead to the divergence
difficulties. Pauli’s connection of the non-linearities of GRwith the divergence difficulties
of QED thus offered an entirely new way to look at these non-linearities: For Solomon,
these were terms arising in a higher approximation to the full theory, spoiling the usual
quantum field theoretical approach by eliminating the possibility of plane wave solutions.
In contrast, the non-linear terms could now be considered as interaction terms, added on to
the Lagrangian for the free spin 2 field, just like the interaction terms of QED were added
on to the free field Lagrangians, with the sole difference that one was now talking about
self-interactions of a single field.

As long as the divergence difficulties of QED remained unresolved, this hardly made
a difference. But when covariant renormalization was developed in the late 1940s, it
seemed plausible that the same techniques might also be used for the non-linear the-
ory. By using the interaction representation, one could quantize the gravitational field
in the same manner as the electromagnetic field, by separating the free spin 2 quantum
(which had plane wave solutions, thereby circumventing Solomon’s objection) from its
self-interaction. The self-interaction (as well as the interactions with the matter fields)
could then be treated in the same manner as the interactions of QED, possible divergences
being absorbed into the properties of the free field. Thus the program of covariant quanti-
zation was born, which, however, took off only somewhat after the period covered in this
book. We thus see how the two major programs for the quantization of gravity, canon-
ical and covariant quantization,28 had their origins in the 1930s, in two attempts to get
over the quantization difficulty of QED with, at this early stage, only weak and incidental
connections to the specific problem of quantum gravity.
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Discreteness and Divergences





Chapter 24
The Emergence of Quantum Geometry
Dean Rickles

A central theme of the previous selection of papers was the existence of a variety of di-
vergences, especially the problems generated by the self-energy of elementary particles.1
A common thread that emerges, persisting to this day, is that gravitation might be able
to get some kind of foothold in the theory of elementary particles if it could be invoked
to provide a physical (non-ad hoc) cutoff at wavelengths that do not conflict with current
observations of experimental particle physics data.2 Hence, Einstein’s old question about
the role of gravity in elementary particle physics (mentioned in the introduction to part one
of this volume) comes alive once again, though not in the way he envisaged it: gravity is
rather “put to service” in elementary particle physics as a kind of external resource. How-
ever, the notion of a gravitationally induced cutoff took some time to form, and had to
wait for a more thorough understanding of the non-linear aspects of the theory, which had
remained largely buried under the more tractable linear approximation.3 But this work can
be seen as emerging from a well-worn path involving the usage of other cutoffs (minimum
lengths) to tame the infinite behaviour of field theories—if gravity suggests a minimum
length, then previous work on such ideas can be transferred across from context to con-
text. The papers presented in this part, then, as with many others in this book, were not
initially written with quantum gravity in mind; this was a connection only made later once
the problem of quantum gravity itself had undergone several changes—not least the idea
that quantum gravity involves quantum spacetime.

There were many early suggestions that gravity might act as some kind of divergence
“regulator”. The divergences in question were those of QED, and meson theories, which
were still, pre-WWII, a somewhat mathematically murky territory (quantum field theory
still is, of course). The problem concerned the transitions between quantum states, during
which time (a very short time, determined by the uncertainty relations) energy conserva-
tion is violated. The great hope for introducing gravitation into elementary particle physics
was that it would terminate the wavelengths before they have a chance to reach the prob-
lematic high-energy (ultraviolet) wavelengths. Landau (1955) appears to be the first to
have suggested this idea based on his more general desire to achieve something beyond
quantum field theory, since Landau had a deep distrust of quantum field theory. More
specifically, Landau’s field theoretic investigations revealed that even given renormaliza-
tion, the short-distance behaviour continued to generate infinities (“Landau ghosts”) on
account of the approach to the infinite bare masses and couplings (past the “screening”

1A good philosophical treatment of the reactions to these divergences is Rueger (1992).
2The alternative, to be found in superstring theory, is to postulate a finite size for the elementary entities (in
the earlier period, this would have been, e.g., the electron radius).
3What the non-linear analysis eventually revealed was that gravity’s divergences were more complex than
those of electrodynamics, since they involved a shifting of the light cone so that light cone singularities
would be “smoothed out” by fluctuations in a quantum theory of gravity (a nice result of the quantum
geometry inherent in quantization of the metric): Klein 1956; Landau 1955;Deser 1957. We return to this
briefly below.
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effect that Landau had himself discovered).4 Pauli also makes several comments to this
effect,5 including the following remarks in a letter addressed to Abrikosov, Khalatnikov,
and Pomeranchuk (in which he assigns priority of the idea to Landau):

I was very interested in Landau’s remarks on the possibility of a connection of
the cut-off moment of quantum electrodynamics with gravitational interac-
tion (his article “on quantum theory of fields” in the Bohr-festival volume). It
appeals [sic] to me, that the situation regarding divergencies would be funda-
mentally changed, as soon as the light-cone itself is not any longer a 𝑐-number
equation. Then every given direction in space-time would have some “prob-
ability to be on the light-cone”, which would be different from zero for a
small but finite domain of directions. I doubt, however, that the conventional
quantization of the 𝑔𝜇𝜈-field is consistent under this circumstances. (Zürich,
15 August 1955; in Meyenn (2001, 329))

Given his obvious expertise in both general relativity and quantum field theory, one won-
ders why he didn’t do more work in the area of quantum gravity. Though as he suggests,
it is clear that novel (i.e. unconventional) approaches are probably required (a far cry from
his optimistic remarks in the 1929 paper with Heisenberg in which he claims that the
general relativistic case would be much the same as electromagnetism). He was, nonethe-
less, certainly preoccupied with general relativity towards the end of his life—perhaps
this “later-life” preoccupation with the unification of quantum and gravity (also shared by
Eddington and Schrödinger) contributed in some small way to the poor reputation of the
field at this stage.

Developing his earlier remarks to Abrikosov et al. (in the discussion after Klein’s
talk), Pauli mentions Landau’s argument that for large cutoff momentum 𝑃 , the gravi-
tational coupling between a pair of electrons is of the same magnitude as the Coulomb
forces. He notes that Landau’s relation 𝐺𝑃 2 ∼ 1 is the same as Klein’s 𝑃 ∼ ℏ/𝑙0 (where
𝑙0 = √𝐺ℏ𝑐). He writes:

[T]he connection […] of the mathematical limitation of quantum electrody-
namics with gravitation, pointed out by LANDAU and KLEIN, seems to me
to hint at the indeterminacy in space-time of the light-cone, which is gov-
erned by probability laws in a quantized field theory, invariant with respect
to the wider group of general relativity. It is possible that this new situation
so different from quantized theories, invariant with respect to the LORENTZ
group only, may help to overcome the divergence difficulties which are so
intimately connected with a 𝑐-number equation for the light-cone in the latter
theories (Pauli’s comments after Klein’s talk, in Mercier and Kervaire 1956,
69).

Pauli’s thoughts were borne out in one way (the light cone structure is affected as he sus-
pects); however, it leaves a challenge behind in dealing with new divergences. As Bryce
DeWitt pointed out, in Louis Witten’s important collection, Gravitation: An Introduction
to Current Research, from 1962 (less than seven years after Pauli’s remarks),
4Later work would reveal that such Landau ghosts could be dealt with in the context of renormalization
group theory, but at the time it appeared as though quantum field theory was suffering from an incurable
illness—for more on this, see Brown (1993, 21).
5See also Pauli’s letter to Källén (dated 24th April, 1955: pp. 207–208); Peierls’ letter to Pauli (dated 9th
May, 1955: pp. 228–229); Pauli’s letter to van Hove (dated 11th May, 1955: 230–231); Heisenberg’s letter
to Pauli (dated 11th, May 1955: pp. 234–235).
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[I]t must constantly be borne in mind that the “bad” divergences of quantum
gravidynamics are of an essentially different kind from those of other field
theories. They are direct consequences of the fact that the light cone itself gets
shifted by the non-linearities of the theory. But the light-cone shift is precisely
what gives the theory its unique interest, and a special effort should bemade to
separate the divergences which it generates from other diverg’ences. (DeWitt
1962, 374).

In the United States, the first PhD thesis to be written on quantum gravity was that of Bryce
DeWitt, under the supervision of Julian Schwinger (at Harvard University, completed in
1949). DeWitt sought to revisit Rosenfeld’s work on the computation of gravitational self-
energies (cf. Deser 1957). DeWitt would also revisit this idea of Landau’s that gravity
might act as a natural regulator (DeWitt 1964). Though Landau didn’t explicitly mention
the Planck scale (he placed the location of the cutoff much higher), Pauli clearly appeared
to think that Landau had quantum gravitational effects in mind (or that he ought to have).
It is clear that if there is a “fundamental length,” below which ordinary quantum field
theoretic processes cannot operate, then one has what Landau sought. DeWitt was able to
confirm that (at lowest order of perturbation) when gravity is included, the self-energies of
charged particles (and the gravitons themselves) remain finite (though often very large).
Here again, as in earlier parts, we see a link between minimum length scales and the notion
of limits and domains of applicability of theory and concepts. The question of whether
there is a physical cutoff naturally has theoretical links with programmes concerning the
existence of a fundamental length, and discrete space(time) in general.6

More indirect, however, was Peter Bergmann’s method of utilising the fact that the
gravitational field equations determined particle trajectories free of any notions of diver-
gences. He believed this would follow from the analysis of Einstein, Hoffmann and Infeld,
according to which the assumption of geodesy for a free particle’s motion was redundant,
since it already could be seen to follow (by a method of successive approximation) from
the field equations alone.7

Developing the cutoff idea, and the idea that there might be a minimal (fundamental)
length, leads one quite naturally into the idea that space and time might not be continuous,
6As DeWitt puts it: “The dimension 10−32𝑐𝑚 constitutes a fundamental limit on the smallness of allowable
measurement domains. Below this limit it is impossible to interpret the results of measurement in terms of
properties or states characterising individual systems under observation” (DeWitt 1962, 373).
7I might also note here that ultimately string theory emerged from the divergences problems facing quantum
field theories of fields other than the electromagnetic field (particularly the strong interaction). In particular,
since the perturbative approach breaks down when the coupling constant determining the strength of an
interaction is large (as in strong interaction physics), alternative approaches were sought in the late 1950s
and throughout the 1960s. One of the more popular of these approaches combined Heisenberg’s S-matrix
theory with dispersion theory. The S-matrix is a tool to encode all possible collision processes. Heisenberg
suggested that one take this to embody what was relevant about the physics of collision processes. In
particular, all that was observable were the inputs and outputs of collision processes, observed when the
particles are far enough apart in spacetime to be non-interacting, or free. This black box approach to physics
was very much inspired by the Copenhagen philosophy. The dispersion relation approach to physics tried
to construct physical theories on the basis of a few central physical axioms, such as unitarity (conservation
of probabilities), Lorentz invariance, and causality (effects can’t precede causes). These two approaches
were combined, by Geoff Chew amongst others, so that the focus was on the analytic properties of the S-
matrix. One model for the S-matrix, incorporating some other principles thought to be involved in strong
interaction physics, was the Veneziano model. This used the Euler beta function to encode the various
desirable properties of the S-matrix. The model was found to be generated by a dynamical theory of strings.
(See Cushing (1990) for a detailed historico-philosophical account of the early development of string theory,
or Rickles (2014) for a more recent account.)
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but better modelled instead by a discrete lattice or similar structure. In the early days
the cutoff was implemented in the kinematical structure, rather than having it emerge
dynamically—whether the cutoff (discreteness) is fundamental or not is a different issue.
This was suggested by several people. In a paper from 1930 Ambarzumian and Iwanenko
(Chapter 25) argued for the introduction of a spatial lattice structure for physical space
as a way of eliminating the infinite divergences from the self-energy of the electron. The
basic idea was that the existence of a minimal length would imply a maximal frequency
(p. 416). Alfred Schild (Chapter 30) investigated the properties of such a discrete lattice in
order to see if it would break essential symmetries. In particular, he was responding to the
objection that discrete theories would violate Lorentz invariance, which could manifest
experimentally resulting in inconsistencies with known results.8 He wasn’t able to devise
a model to preserve all such symmetries, but enough to provide a plausible candidate for a
background for a physical theory. Here again we find constraints operating on the various
approaches to provide some sort of mechanism for the rejection and selection of theories
or approaches—in this case the Lorentz symmetry of the classical theory.

Another discrete approach, of David van Dantzig (1938; 1956), was motivated by a
combination of general covariance (as expressed in Einstein’s “point-coincidence” argu-
ment) and the definition of observability in such a theory. He argued that in a generally
covariant theory the observable things will be coincidences: events (not shuffled by diffeo-
morphisms). Van Dantzig argues that in order to not introduce unmeasurable structure into
the interpretation or formulation of one’s theory, one should dispense with the existence of
a four-dimensional continuum, in favour of a discrete manifold of events. Peter Bergmann
describes one such approach as one of “constructing “spaces” that have certain topologi-
cal properties similar to those of point spaces in the large but do not possess “points” as
elementary constituents” (Bergmann, following a talk of Wigner’s: Wigner (1956, 226)).
The general approach lives on in several of the current approaches, including causal set

8This same objection to discrete models surfaces again in present-day discussions of discrete space in quan-
tum gravity (a fairly generic prediction of several approaches), especially in the context of loop quantum
gravity which directly predicts (at least at the kinematic level) geometrical operators with a discrete spec-
trum. Given that there is supposed to be a fundamental length (namely the Planck length, and corresponding
fundamental times and masses) in these approaches, it makes sense to ask if observers in relative motion will
agree on this length: why no Lorentz-FitzGerald contraction for boosted observers, rendering the notion of
a minimum length incoherent? Why is a length measurement for the minimum length case not subject to the
usual frame dependence? According to Carlo Rovelli (one of the primary architects of loop quantum grav-
ity that itself appears to face the problem) and Simone Speziale, quantum mechanics is the key to avoiding
this “discreteness/invariance” conflict: “the minimal length (more precisely, minimal area) does not appear
as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable
[so that the] boosted observer can see the same observable spectrum, with the same minimal area. What
changes continuously in the boost transformation is not the value of the minimal length: it is the probability
distribution of seeing one or the other of the discrete eigenvalues of the area” (Rovelli and Speziale 2003,
064019). They elaborate as follows, linking directly with issues of quantum spacetime: “The geometry of
space comes from a quantum field, the quantum gravitational field. Therefore the observable properties of
the geometry, such as, in particular, a length, or an area, are observable properties of a quantum physical
system. A measurement of a length is therefore a measurement in the quantum mechanical sense. Generi-
cally, quantum theory does not predict an observable value: it predicts a probability distribution of possible
observable values. Given a surface moving in spacetime, the two measurements of its area performed by
two observers 𝑂 and 𝑂′ boosted with respect to one another are two entirely distinct quantum measure-
ments. Correspondingly, in the theory there are two distinct operators 𝐴 and 𝐴′, associated to these two
measurements. Now, our main point is the technical observation that 𝐴 and 𝐴′ do not commute:

[𝐴, 𝐴′] = 0. This is because 𝐴 and 𝐴′ depend on the gravitational field on two distinct 2d surfaces in
spacetime […] and a field operator does not commute with itself at different times”. Hagar (2014, §8.4.4)
contains a useful, detailed discussion of this problem.
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theory and dynamical triangulations—though the conceptual basis (especially observabil-
ity through invariance is absent from the latter case). Bergmann’s comments also draw
attention to the “emergence” of continuous spacetime from a discrete structure (a problem
at the root of causal set theory, though one in which progress has been made: see, e.g.,
Major, Rideout, and Surya (2007)).

There was nothing corresponding to paradigms in the early work. Nobody pursued
a single programme for long enough—though Bergmann’s initial canonical quantization
approach spawned a genuine research programme (along with a family of characteristic
questions, having to do with “true observables” and the like) that has persisted. How-
ever, in the present day we do have a situation of what seem to be competing, coexisting
paradigms (with elements of this sourcebook’s papers as ingredients). We can find the
seeds of this landscape in the emergence of various “schools of research”, each tackling
the problem of quantum gravity in a unique way. Often these schools themselves had
seeds in the distinct tools that the researchers brought from their training, as physicists
and mathematicians (recall that before the 1960s, it was rare to find general relativity
taught outside of mathematics departments).

The idea at the focus of the papers in this part, that a discretization of space might
go some way towards resolving the problems of short-distance physics, is of course rather
natural and almost obvious. However, the initial developments were not linked to gravita-
tional physics, although many of the results originally couched in non-gravitational work
were carried over into that area. It was eventually realised, for example, that gravitation
itself might be able to provide a physical foundation for discrete space and that given
the dual nature of the metric field, quantum gravity should lead one to expect a discrete
spacetime. Given this, the various results pursued independently of the quantum gravity
problem (violation of Lorentz invariance and so on), become directly relevant.

There are three motivations underlying the notion of discrete space(time) in the early
work:9

1. An ad hoc discretization using a lattice structure—often used as an approximation,
for which the continuum limit would be taken later on.

2. An operational discretization using fundamental measurement limitations imposed
by the uncertainty relations.

3. A discretization using a physical cutoff imposed (e.g. by gravity).

The first steps towards a field theory over a discrete space—along the first motivation (in
the context of field theory)—were taken by Ambarzumian and Iwanenko in 1930. This
paper also includes a discussion of whether time would need to be quantized, along with
space, as a corollary. The argument is simple: a minimum length implies a maximum
frequency which implies a minimum time interval Δ𝑡 = 1

𝑐 Δ𝑥.10 They are concerned
solely with the infinite self-energies that arise from the point-like nature of electrons. As

9As Rueger makes clear (Rueger 1992, 317), prior to the 1930s there was a sense that the infinities were
simply a hangover from the classical theory that if cured first (classically) would not reassert themselves
at the quantum level. This was not the case, and it became clear that there existed specifically quantum
divergences.
10In another paper from the following year, Iwanenko reiterates that the value 𝜆 ∼ ℎ

𝑚𝑐 also determines a
“chronon”: “Dieser Wert hat schon als kleinste definierbare Entfernung zu gelten und nicht der Elektro-
nenradins. Mit der kleinsten Entfernung hängt die kleinste Zeitspanne zusammen” (Ivanenko 1931, 623).
As Kragh and Carazza note, there were earlier speculations, with similar results, about time atoms from
Pokrowski and Fürth (Kragh and Carazza 1994, 457–458). Indeed, they show that the 20s and 30s were
positively teeming with discrete space, time, and spacetime proposals. However, many of them are de-
tached from the central problems of field theories that concern us here.
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they note, there seem to be two broad ways out of the predicament: give the electrons a
finite size, or else restrict the spatial resolution to which one can probe (placing a limit on
the validity of the theory—motivation two above). Since the former was thought to be not
possible in quantummechanics, they opt for the latter strategy. They resolve this “problem
of space” by introducing a cubic lattice with grid points separated by some constant factor,
𝑎, to be determined (such that ordinary quantum theory is recovered as 𝑎 → 0). Differential
equations are then replaced by discrete, difference equations.

This was followed by Heisenberg,11 Ruark, March and several others, including, in
England, Henry Flint. Flint was an interesting case, since he had his eye on the problem
of unification of relativity and quantum mechanics in his work on fundamental length (via
“ultimate measurements”—again, corresponding to the second motivation).12 The Am-
barzumian and Iwanenko paper was also directly cited by Schild, in his paper on discrete
spacetime (included in this volume).

There were some other interesting attempts for “quantizing space” in the 30s. The
most interesting is perhaps John Von Neumann’s (unpublished) proposal from 1937.13
Von Neumann distinguishes two kinds of singularity: the point-particle singularity and the
infinite degree of freedom singularity (resulting from the infinite number of parameters
needed to describe a field). In a letter to Rudolf Ortvay from 1938 he describes his model
for discrete spacetime as follows:

(1) The 𝑥, 𝑦, 𝑧 coordinates and the 𝑡 are non-commuting operators.
(2) The order of magnitude of commutators is ℎ

𝑚𝑐 . (That is to say, this is
the uncertainty associated with a simultaneous measurement of coordi-
nates.)

(3) The whole structure has the Lorentz-symmetry.
(4) Each of the 𝑥, 𝑦, 𝑧 coordinates has a discrete spectrum: ±1/2, ±3/2, …
(5) The spectrum of the time 𝑡 is continuous, from −∞ to +∞.
(6) When 4. and 5. are combined with 3. this comes out:

Given four real numbers 𝛼, 𝛽, 𝛾 , 𝛿, the spectrum of the operator 𝛼𝑥 +
𝛽𝑦 + 𝛾𝑧 + 𝛿𝑡 is as follows:

(a) If 𝛼2 + 𝛽2 + 𝛾2 − 𝛿2 > 0 then it is discrete: ±𝜖/2, ±3𝜖/2, … ,
where 𝜖 = √𝛼2 + 𝛽2 + 𝛾2 − 𝛿2.

(b) If 𝛼2 +𝛽2 +𝛾2 −𝛿2 < 0 (indeed even when = 0) then it is continuous
from −∞ to +∞.

So this a “discrete” crystalline space with “continuous” time, which has not
only spherical symmetry (even though it is a “crystal”!), but is even invariant

11In fact, in the acknowledgements to their paper, Ambarzumian and Iwanenko refer to analogous work of
Heisenberg that they had only just became aware of at the time of publication.
12In his notebook (from 1950) there is a section on “The Theory of Relativity and the Quantum Theory”
in which he nails down his project: “The underlying theme of this work is the union which exists between
the theory of relativity and the quantum theory and the purpose is to portray it by means of geometry and a
theory of measurement” (Henry Flint Papers, University of London, Document B53: p. 1).
13The manuscript is entitled “Quantum Mechanics of Infinite Systems” see Rédei (2005, 21–22).
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with respect to changes of the reference system given by Lorentz transforma-
tions, and so shows the proper Lorentz-FitzGerald contraction phenomena.
(This is made possible, of course, by the non-commuting nature of the co-
ordinates.) (von Neumann, letter to Rudolf Ortvay: March 17, 1938 [Rédei
2005, 22])

In a letter to Dirac (dated January 27, 1934) he writes:

It should be perhaps desirable, to have operators 𝑋, 𝑌 , 𝑍 which gave discrete
(point) spectra, in order to avoid the difficulties connected with the point elec-
tron (in electrodynamics). (Rédei 2005, 21)

Dirac replied the following month (February 28, 1934) pointing out that the model was
not invariant under displacement of the origin of the reference frame defined by the 𝑋, 𝑌 ,
𝑍.

Quantization here is viewed, then, as a cutoff to prevent the ability to resolve to
point-like distances. The problem with such accounts is that they are physically ad hoc
(motivation one from above). Von Neumann did not pursue the idea further for this reason:
“because [he] considered it very artificial and arbitrary” (Rédei 2005, 22).

Heisenberg was inspired primarily by the second motivation, though it mixed with
the first, in order to tame the infinite self-energy of electrons.14 His first thoughts about
discretisation can be found in a long letter to Bohr from March 1930 (translated into En-
glish in Carazza and Kragh (1995), along with a reconstruction of the logic of the argu-
ment it contains)—one wonders whether he was aware of Ambarzumian’s and Iwanenko’s
work, which is remarkably similar (as mentioned, Ambarzumian and Iwanenko note, at the
proofs stage of their paper, that they were aware of Heisenberg’s attempt, though it is hard
to discern whether their work was initially written without knowledge of this). The idea
is also to divide space up into a cubic lattice, where the cells have volume 𝑟3

0 = (ℎ/𝑀𝑐)3.
The length 3√𝑟0 (the electron radius) was then the “elementary length”. He called the
world described by this theory “gitterwelt” (“lattice world”). The self-energy of an elec-
tron would be rendered finite in the gitterwelt—a point Heisenberg returned to in his paper
“Die Selbstenergie des Elektrons” (submitted in August of that year). As Heisenberg also
notes, in the given scheme differential equations would have to be replaced with differ-
ence equations.15 A central problem, as Heisenberg saw it (and as would deter others
from the discrete space idea) was that relativistic invariance was spoiled by any scheme
that introduced a fundamental length—this assumption was progressively taken apart in
papers from the late 1930s onwards. (Heisenberg also pointed to difficulties in making the
space isotropic; as well as with energy, momentum, and charge conservation: for these
reasons he asked Bohr whether he thought the idea “completely mad”!) But beyond this
breakdown of Lorentz invariance, the other target of Heisenberg’s 1930 paper was to show
that there are wider problems with field theory that go beyond the problem of infinite self-
energy—this became part of a general programme of getting clearer on the distinct kinds
14Interestingly, Heisenberg had already briefly considered the idea of letting spatial coordinates be non-
commuting in 1930 in order to generate a minimum length from uncertainty relations. He put this idea to
Rudolf Peierls asking for any suggestions, including any input from Pauli. Julius Wess (2001, 1) claims that
Heisenberg relayed it to Peierls (his student), who relayed the idea to Pauli who relayed it to Oppenheimer
(his student), who relayed it to Hartland Snyder (his student: see below)! This occurs over a period of 15–16
years.
15Carazza and Kragh (1995) argue that Heisenberg did not really endorse a discrete space at this stage, but
rather used discreteness only at the level of derivatives with respect to spatial coordinates (which are indeed
replaced by discrete, finite differences).
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of divergences in physical theories (on which, see the introduction to the previous part of
this volume).

In his 1938 paper (Chapter 26: “Über die in der Theorie der Elementarteilchen auftre-
tende universelle Länge”), Heisenberg explicitly ignores gravitational interactions “which
hardly play a role in nuclear physics,” focusing on ℏ and 𝑐 alone. This is part of a general
to and fro with respect to the role of gravitation in elementary particle physics. However,
when discussing the “universal length” he does briefly return to the issue, though again to
dismiss gravity’s role in the fundamental length. As is standard, he considers the electro-
magnetic analogy, comparing the gravitational interaction of photons with the electrical
interaction of electrons. But he notes a crucial dis-analogy: introducing the gravitational
constant (Heisenberg uses 𝛾 rather than 𝐺) together with ℏ and 𝑐 can be combined to gen-
erate the (Planck) length: 𝑙 = √ℏ𝛾/𝑐3 (which Heisenberg computes to be 4 × 10−33cm).
However, given the vast distances separating these domains, Heisenberg points out that
the problems ass’ociated with his 𝑟0 (the electron radius) ought to be resolved first, as
the most urgent task. In other words, there is a practical argument here for the neglect of
issues having to do with quantum gravity.

The reason for this urgency were the difficulties faced by Fermi’s theory of 𝛽 decay,
based on Pauli’s neutrino hypothesis, which was found to suffer from divergences of an ex-
treme (i.e. unrenormalizable in modern parlance) kind—involving the divergence of (Born
approximation) cross sections as the energy of the incident particles went to infinity—so
that the perturbation technique for treating interactions didn’t give sensible answers.16 Of
course, we know that this problem was pointing to a limit with the then current quantum
field theory. But Heisenberg, viewing Fermi’s theory as a fundamental (and unified, in
terms of weak and strong forces, with a single coupling constant) theory, took it to point to
another source in which one could only resolve distances to certain distances, again close
to his 𝑟0.17 In this case Heisenberg drew attention to the particle multiplicity (“explosio-
nen”) in cosmic ray showers in which many particles are created: the particle production
would limit the resolution (so that 𝑟0 represents a fundamental limit in this sense: physics
becomes “turbulent” at shorter lengths as the coupling blows up). Of course, there was a
limit, but the limit was theoretical rather than practical: therewas a layer of particle physics
below that captured by Fermi’s theory. The short-distance, strong interaction physics that
followed this was a major impetus to quantum gravity physics since gravitational and
strong interactions had similar non-linearities (due to the self-interacting nature of the
forces)—though, of course, gravity is universal (couples to all sources of energy equally).
Hence, a new analogy between these forces, and to a lesser extent with electrodynamics,
took hold.18

16The is the famous four-fermion coupling 𝐺𝐹 which was not properly understood until the electroweak the-
ory was developed, and the machinery of gauge theory was applied, along with Yukawa’s idea of mediation
by a new kind of boson (the “U-quantum” or mesotron) which replaced the four-fermion term. The evidence
for mesons came in 1937, when they were isolated in cosmic rays. It should perhaps also be said that the
realisation that all would not be plain sailing with respect to the other forces of nature shifted the focus onto
the peculiarities of gravitation. See Chapters 3 and 4 of Brown and Rechenberg (1996) for a historical study
of the Fermi-field theory.
17Now the length involves themesotronmass𝜇, ℏ/𝜇𝑐, derived fromYukawa’s theory. Note that Heisenberg’s
persistent belief in a fundamental, universal length can be seen as more reasonable given that there is a
remarkable coincidence between the electron radius and this meson mass (and so the range of the nuclear
forces).
18As Brown and Rechenberg make clear, the existence of cosmic ray phenomena was pivotal precisely in
that it served to delineate the borders of the known physical theories, pointing out exactly when they would
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We have seen that Bronstein had already written on related issues in 1936, pointing
out that there exist quantum measurement restrictions beyond the commutation relations
in the case of gravitational measurements, since there cannot be bodies of arbitrarily large
mass density (cf. Gorelik and Frenkel 1994, 106). Bronstein thought this called for a
revision of spacetime concepts (as did Heisenberg, though for different reasons). Unfor-
tunately, his untimely death means that we don’t know how or if he intended to pursue
this revision.

The third motivation was discussed, mostly informally, in our pre-1950 period, by
Pauli and Landau amongst others, but the idea was not fully developed in published form
beyond mere suggestions.

Hartland Snyder’s is probably the best known early work on discrete spacetime—the
paper is truly a citation classic, with 1714 citations at the time of writing.19 In this case the
resulting spacetime is explicitly presented as quantized, with the spacetime coordinates
themselves represented by Hermitian operators with discrete spectra. We have already
seen this basic idea, of course, with Heisenberg and von Neumann. The innovation is
to properly formalise the idea and establish that the discrete space idea need not violate
Lorentz invariance.

Snyder (1947) returned to the subject the following year, with a paper applying the
quantized spacetime concept to the electromagnetic field. There is then a trail leading
from Snyder to Schild, in which the mathematical properties of quantized spacetime are
uncovered.20

C. N. Yang (Chapter 28) tackled a serious issue with Snyder’s model, namely that it
violates translation invariance whenever the coordinates are not a continuum. However,
a continuum clashes with the fundamental (i.e. non-epistemic) minimum length of the
model.21 Yang resolves the translation issue, but a problem of scale persists, namely in
the form of a curvature of the universe at odds with what we observe (curvatures are of
the order of the Planck scale rather than the Hubble radius).

break down, see Brown and Rechenberg (1996, 72). Heisenberg was, of course, wrong in thinking that
Fermi’s theory was fundamental: there was new physics that Heisenberg was not then privy to.
19Of course, this is the same Snyder who had worked with Robert Oppenheimer, in 1939, on the fate of
very massive collapsing stars (approximated by an homogeneous, zero pressure ball of dust), showing that
a one-way membrane (an “event horizon” in modern parlance) would emerge from the process and that a
final singularity would also result—Landau had earlier noted the existence of a critical mass in 1932, and
Chandrasekhar had shown in 1931 that the electron degeneracy pressure could not withstand further collapse
for stars greater than 1.3 solar masses. It is rather odd that Snyder never made any link between these two
streams of his work—continued collapse to a singularity and discrete space—since the former involves the
reduction of a system’s dimensions to values small enough (perhaps indefinitely small) to be relevant for the
latter. (Oppenheimer and Snyder even write, “Physically such a singularity would mean that the expression
used for the energy-momentum tensor does not take account of some essential physical fact which would
really smooth the singularity out”, Oppenheimer and Snyder (1939, 456). Later, John Wheeler would bring
the two together via the Planck length: two areas where the “dynamics of geometry” fails to lend itself
to classical analysis (Wheeler 1968, 253–254). This work would lead, ultimately, to Wheeler’s notion of
“spacetime foam.”
20Bergmann and Brunings briefly refer to Snyder, if only to distance their quantised metric variables from
his: their coordinates, as they say, “commute with each other, but not with the energy-momentum densities”.
They continue: “The dynamical character of any particle coordinates follows automatically, but probably
does not exhaust the physical significance of the coordinate commutation relations” (see Chapter 33). This
highlights the continuity, at least, between Snyder’s (and the other related) work on quantized/discrete spaces
and quantum gravity research.
21We saw above, in footnote 8, how Rovelli and Speziale manage to sidestep the problem by introducing
probabilities for measurement outcomes.
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It is rather interesting that Alfred Schild published his work on discrete spacetime
around the same time that he transitioned into research on the canonical quantization of
general relativity, following Dirac’s influential 1949 lectures at the International Math-
ematical Congress in Canada, which Schild attended with his Masters student Felix Pi-
rani.22 Yet there is no mention of gravity in his paper on discrete spacetime, despite the
fact that together with Pirani, Schild explicitly quantised the spacetimemetric. This clearly
reveals (perhaps rather surprisingly) that the project of “quantization of gravity” had not
yet been linked to what we now call “quantum spacetime.” The focus is instead on the
construction of a discrete model of spacetime that is as close as possible to Lorentz in-
variant, and the context is the problematic divergences of standard quantum field theory.
Schild’s basic object is a hypercubic lattice, with time coordinate included amongst the
spatial coordinates. He deals with (𝑐 = 1) Lorentz transformations that map a 3-lattice
onto itself (where the 3-lattice takes on integer coordinates).

While Snyder’s approach was indeed Lorentz invariant, it made use of the rather awk-
ward idea that spacetime coordinates were non-commuting operators (so that spacetime
functions become Hilbert space operators) and was not translation-invariant. Schild uses
coordinates that are integer multiples of a fundamental length (rather than having eigenval-
ues that are integer multiples as with Synder), and so more along the lines of the proposals
of Ambarzumian and Iwanenko et al.. Schild’s goal is likewise to show that a common
objection against discrete approaches to eliminating the divergences—that they violate
Lorentz invariance due to the frame dependence of the “minimum” cell size—is only par-
tially correct since one can construct models that are invariant under a large subgroup (the
discrete subgroup) of the Lorentz group. These, he suggests are in fact physically viable
(unlike Snyder’s and Yang’s), and cast in a model closer to ordinary spacetime, thus un-
dermining a host of common objections and making discrete models in principle a genuine
possibility for fundamental physical theory—though, as he admits, his own model suffers
from physical inconsistencies to do with a radically oversized minimal velocity.23

Nathan Rosen (Chapter 29) introduces statistical considerations into the treatment of
a discrete space: his elementary volumes are related to positionmeasurement uncertainties
(that is, to practical limitations: no infinitesimal measurement rods, therefore no physical
point-like measurements). More specifically, the measurement of spatial coordinates of
elementary particles (electrons) introduces inaccuracy into the measurement results such
that repeated measurements will generate values sitting around the mean of a Gaussian
distribution. His aim is, as with other proposals we’ve considered, to eliminate singulari-
ties (relating to the second motivation again). The resulting picture is not so very different
from the Synderian one of a non-commutative space. However, the discreteness here is
epistemological, coming from the difficulties involved in pinning down a spacetime point.

There is a very (later) Eddingtonian quality to this, especially the splitting of the ab-
stract space from the observable space, which corresponds to Eddington’s geometrical and

22Indeed, Schild’s paper appears in the very same journal as Dirac’s paper, in the issue directly preceding
that containing the paper that would inspire Schild’s work on the quantisation of the gravitational field.
23This shortcoming was partially eliminated by E. L. Hill in 1955 by restricting the values of spacetime
variables to rational numbers—partially, because the resulting space does not quite live up to the “discrete”
moniker. As Hill notes in a footnote in this paper, his Master’s student, C. N. Kelber was working on this
same problem of Lorentz invariance violation at the same time as Schild. There is some correspondence
between Schild and Kelber, where the latter explains that he has a model that involves non-homogeneous
Lorentz transformations so that the origin is not fixed for all observers (Kelber, letter to Schild, June 21st
1948).
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physical frames.24 Volumes in the observable space correspond to points in the abstract
space. Lorentz invariance is preserved in this scheme only in the abstract space; yet Rosen
suggests that a kind of translation manual could be established between transformations
in this space and real physical transformations in the observable space.

There is also an interesting parallel here to some of the issues regarding the “real-
ity of spacetime points” (e.g. in the context of the hole argument in general relativity).
Rosen argues that the value of a physical quantity at a point is not directly observable, so
that physical laws should not be based on such quantities. What is not clear is whether,
according to Rosen, the world (ontology) tracks epistemology so that our laws must be
written this way because the world is that way so that only the mean values of quantities
over volumes have any physical meaning at all.

Rosen reviewed a closely related paper by Averbah and Medvedev in 1949. He also
later returned to a similar idea, writing with Asher Peres, in 1960, though this time explic-
itly linking to measurement of the gravitational field. By this stage they viewed the exis-
tence of quantum uncertainties in these measurements (in the mean values of the Christof-
fel symbols) as pointing to the necessity of quantizing the gravitational field. Though
we don’t see any explicit discussion of the “discrete space-gravitation” connection, the
works presented here nonetheless contain crucial evolutionary steps. The recognition that
playing around with the structure of space(time) might offer up cures for some of the dif-
ficulties of quantum field theory was an early one; linking this up with the way in which
general relativity includes the geometrical structure of spacetime as one of the dynamical
variables took somewhat longer.
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Chapter 31
The Genesis of Canonical Quantum Gravity
Alexander Blum and Donald Salisbury

The late 1940s saw the solution of the divergence difficulties of quantum field theory,
or at least quantum electrodynamics.1 The renormalization program was successful not
only in removing the infinities, but also in giving precise values to the finite remainders.
These were in excellent agreement with newly discovered precision effects, such as the
Lamb shift and the anomalous magnetic moment of the electron. The renormalization
techniques were, at least initially, based on the covariant quantization procedure discussed
in Chapter 17 and their application to the quantization of gravity was taken up in the 1950s.

In parallel, and sometimes in direct opposition, to the development of renormalized
quantum field theory (QFT), a second route to quantum gravity was developed in the late
1940s, initially by Peter Bergmann. Bergmann had been an assistant of Einstein from 1936
to 1941 and had worked with Einstein on the attempts to construct a five-dimensional uni-
fied field theory (UFT).2 But unlike Einstein, Bergmann was not in radical opposition to
modern quantum theory, having learned it as a student of Philipp Frank in Prague in the
mid-1930s. After obtaining a permanent position at Syracuse University, Bergmann thus
abandoned the pursuit of a unified field theory and set himself to reconcile general rela-
tivity (GR) and quantum theory through the construction of a quantum theory of gravity.

Bergmann was little concerned with the contemporary rapid development of renor-
malized quantum field theory. And indeed, the covariant QED of the day did not seem to
harmonize well with his vision of quantum gravity. The QED of Schwinger was construed
as the quantization of free, linear field theories, both for matter and the electromagnetic
field, which were then perturbed by the introduction of interactions between the fields,
leading to the non-trivial time evolution of the quantum state in the interaction picture.

But for Bergmann the essential element of GR was its non-linearity, because it made
possible the derivation of the equations of motion of point particles directly from the field
equations, as outlined by Einstein, Infeld and Hoffmann (EIH) during Bergmann’s time
with Einstein. Bergmann’s hope was that this feature would carry over from the clas-
sical to the quantum theory, so that a quantum theory of gravity would directly lead to
the quantum equations of motion of point particles as well. He was thus envisioning not
merely an appropriation of the field theory of general relativity through quantum theory
by the methods of field quantization, but rather a true marriage between general relativ-
ity and quantum theory, where the introduction of general relativity would help to solve
the divergence difficulties of quantum field theory, which he, like many others, saw as
originating from the difficulties of having point-like particles.

Of course this approach was not entirely up to date with the current state of quantum
field theory, which had in a sense dispensed with the quantum mechanical notion of in
principle localizable, point-like entities. Photons were certainly not perfectly localizable,
nor were charged particles in electron-positron theory. And Bergmann had to admit that

1See Schweber (1994).
2On Bergmann’s background, see Halpern (2005).
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already classically the EIH procedure was only feasible if one disregarded splitting world
lines, as in the emission of a photon or electron-positron pair creation. But these diffi-
culties were put aside for the moment. Bergmann was after a quantum theory of point
particles and the gravitational field.

The predilection for the EIH procedure was not the only inheritance fromBergmann’s
time with Einstein. From his work on UFT, he also had a clear understanding that GR was
not to be considered the final field theory of gravitation. In his program, he thus did not
engage directly with GR and the quantization of the space-time metric, but preferred to
discuss the quantization of a more general field theory that kept what he considered to
be the essential elements of GR: general covariance and non-linearity, which together
ensured the feasibility of the EIH-type determination of particle trajectories.

The study of the quantization of a field theory mainly characterized by its invariance
properties unwittingly brought him very close to Rosenfeld’s first 1930 paper on what
we have called the momentum difficulty. And indeed, in his first paper on the subject
(Chapter 32), Bergmann showed not only that a general non-linear, generally covariant
field theory would have all the attractive features of GR (EIH determination of the equa-
tions of motion, as well as energy conservation, at least in the same sense as in GR), but
would also lead to identities involving the canonical momenta, of the type that Rosenfeld
had first discovered. There are slight differences in the treatment, of course: Bergmann
did not consider spinorial matter and thus did not introduce tetrads or local Lorentz sym-
metry.3 Without tetrads, even for the case of regular general relativity, Bergmann could
not have constructed a Lagrangian that both contained only first-order derivatives of the
field (metric) quantities and was at the same time a scalar. He thus treated a more general
case than Rosenfeld’s, allowing for the Lagrangian to change by a total divergence under
a general coordinate transformation.4 Bergmann’s derivation of the constraints was thus
somewhat different from Rosenfeld’s and went via the (generalized) contracted Bianchi
identities. This actually lent a certain degree of coherence to Bergmann’s overall approach,
as the Bianchi identities also played an essential role in the generalized derivation of the
EIH result.

Bergmann identified the identities (and the non-unique time development they im-
plied) as the central challenge for the quantization of a generally covariant field theory. He
was well aware that this problem could be remedied by the imposition of gauge, or rather,
in this case, coordinate conditions, but general covariance was such a central concept to
him that he instead aimed for constructing a Hamiltonian in which the arbitrariness of co-
ordinate choice showed up explicitly, in the form of four arbitrary functions. He was thus
aiming for a quantization procedure very alike that of Rosenfeld, yet without, it should be
pointed out, being aware of Rosenfeld’s work.

3Indeed, Bergmann’s paper contains the cryptic remark that general relativity had “so far not successfully
absorbed the existence of quantities possessing half-odd spin.” It is an open historical problem what this
statement refers to.
4A Lagrangian for General Relativity that contained only first-order derivatives of the metric had first
been introduced by Einstein (1916), the so-called Γ − Γ-Lagrangian, given by Einstein originally only for
a specific choice of coordinates. Rosenfeld had actually also considered Lagrangians that change by a total
divergence, but only for “internal” symmetries that do not act on the space-time coordinates. It was thus
not directly applicable to Lagrangians that changed by a total divergence under general coordinate transfor-
mations, but it did apply to Rosenfeld’s tetrad Lagrangian, that changed by a total divergence only under
local Lorentz transformations. Rosenfeld’s tetrad Lagrangian was a scalar density under general coordinate
transformations. His method can be straightforwardly extended to the case of coordinate transformations,
as shown in Salisbury and Sundermeyer (2017).
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The second paper he published in that same year, together with his colleague Johanna
Brunings, represented a further step towards quantization (Chapter 33). The central point
Bergmann wanted to address here was how to carry over the EIH method into quantum
theory. The difficulty he had to address was the following: If there are singular world-
lines in space-time, where the field equations are not satisfied, then one should not inte-
grate over these singular regions in the action integral, whose minimization gives the field
equations. However, without first solving the field equations, one cannot know the exact
singular particle trajectories. Bergmann’s solution was the “parameter formalism.” The
idea was that since the spacetime trajectories of the singularities could not be known in
advance, a four-dimensional multiply connected parameter space (𝑡, 𝑢𝑠) could be utilized
in which parameter tubes could be excised without making a commitment as to the corre-
sponding spacetime particle paths. The original spacetime coordinates 𝑥𝜌 were taken to be
functions of these parameters, thus becoming field variables on par with the gravitational
field, dynamical equations of motion and all. The introduction of parameters was, as ac-
knowledged by Bergmann, closely related to Weiss’s approach discussed in Chapter 17:
For Weiss, too, the field variables were no longer functions of the space-time coordinates,
but rather of the parameters defining a point on the hypersurface, as well as of a further
parameter (𝜆 in Weiss’s notation, 𝑡 in Bergmann’s), labelling a member of a sequence of
hypersurfaces. And for Weiss the original space-time coordinates were also functions of
the parameters. However, in Weiss’s case this was merely to be understood as the def-
inition of a specific foliation of space-time. As Bergmann pointed out, the emergence
of the original coordinates as dynamical variables on the same footing as the field vari-
ables 𝑦𝐴, which was the essential point for Bergmann, was not discussed by Weiss, who
consequently also did not investigate the momenta canonically conjugate to the original
coordinates.

Bergmann’s parameter formalism was now covariant not just under coordinate trans-
formations but also under arbitrary reparameterizations. This covariance brought with
it four new identities. Three of these (corresponding to the three spatial parameters 𝑢𝑠)
could be straightforwardly deduced from the definition of the new canonical momenta
conjugate to the now-dynamical spacetime coordinates. Repeating this procedure for the
fourth (time) parameter 𝑡, did not directly deliver another constraint. Instead, Bergmann
could show in this manner that the Lagrangian in the parameter formalism was homoge-
neous of degree one, in both the field velocities ̇𝑦𝐴 and the coordinate velocities �̇�𝜌, where
the dot refers to differentiation with respect to parameter time 𝑡 in both cases. From this
fact the existence of a further constraint equation 𝑔 = 0 could be deduced.

This function 𝑔 had the properties of the Hamiltonian density, that is, it generated the
canonical field equations of motion through functional differentiation. Consequently, us-
ing Poisson brackets (in the parameter version, first introduced by Weiss in the 1930s, but
now, in Bergmann and Brunings’ approach, also including the space-time coordinates as
dynamical variables) the spatial integral of 𝑔 (the Hamiltonian) could be used to determine
the time derivative of some functional of the canonical variables.5 They then claimed to
show, by calculating the Poisson bracket of the Hamiltonian with an arbitrary linear com-
bination of the constraints, that all eight constraints had vanishing time derivatives, and

5Concerning these functionals, which were to represent physical quantities, Bergmann and Brunings made
the crucial observation in this paper that not all functions of the original field variables and their first deriva-
tives (velocities) possessed a counterpart in phase space. They identified the necessary and sufficient con-
dition for converting a function in configuration-velocity-space into a phase-space function (such functions
need to be, in modern parlance, constant along all of the null directions of the singular Legendre matrix)
and dubbed quantities that satisfied this requirement “dynamical variables”.
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that consequently no further constraints had to be considered. As Bergmann himself would
soon realize, this proof was fallacious.6 They also outlined how to proceed to a quantum
theory, in the same manner proposed by Rosenfeld, that is, by turning the Poisson brackets
into commutators and the constraints into auxiliary conditions on the wave function.

But although several important properties of the constraint 𝑔 were known, Bergmann
and Brunings did not provide a method for explicitly constructing it. They could show that
it was not unique: For example, if one added to 𝑔 some linear combination of the remaining
seven constraints, the resulting function would of course still be a constraint and could also
still be taken as a Hamiltonian density, the new canonical field equations of motion being
related to the ones of the original 𝑔 by a suitable canonical transformation of the dynamical
variables alongwith a transformation of the space-time parameters. This implied that some
specific choice of Hamiltonian density corresponded to choosing a coordinate condition
and thus losing general covariance. But Bergmann and Brunings neither showed how to
construct a specific Hamiltonian, corresponding to a particular coordinate condition, nor a
general Hamiltonian involving arbitrary functions. They thus had reached, in 1949, about
the same point that Rosenfeld had reached in 1930. The next step was clearly the explicit
construction of a Hamiltonian, only that now, in Bergmann’s parameterized approach, this
Hamiltonian would not just generate the field equations of motion and time evolution of
physical variables, but would also itself be one of the constraints.7

In reaching this next step, Bergmann’s group was beaten by Felix Pirani and Alfred
Schild. Their work built on an approach to constrained Hamiltonian dynamics quite dif-
ferent from that of Rosenfeld or Bergmann, presented by Paul Dirac in August/September
1949 at the Summer Seminar of the Canadian Mathematical Congress (Chapter 34), a
newly established graduate-level summer school, which in that year (its second install-
ment) had a special focus on mathematical physics, other lecturers including Homi J.
Bhabha (on quantum field theory) and Laurent Schwartz (on distribution theory; Pro-
ceedings of the Second Canadian Mathematical Congress 1951). Dirac came to con-
strained Hamiltonian dynamics from a direction quite different from that of Rosenfeld
or Bergmann. He was not interested in the effect of symmetries when passing from a La-
grangian to a Hamiltonian formulation of a field theory, be they general local symmetries
(Rosenfeld) or general covariance in particular (Bergmann). Dirac’s focus was rather a
subject that had been on his mind for quite some time: The relation between Hamiltonian
dynamics and special relativity. Dirac viewed this as the central problem in constructing a
(special) relativistic quantum (field) theory, a problem he still considered to be wide open,
as he was not particularly inclined towards the renormalization methods being developed
at the time.8 He had already remarked in 1933:

Quantum mechanics was built up on a foundation of analogy with the Hamil-
tonian theory of classical mechanics. This is because the classical notion of
canonical coordinates and momenta was found to be one with a very simple

6This fact has already been pointed out by one of us (Salisbury 2006). It is hard to say precisely how
Bergmann and Brunings came to this erroneous conclusion, since they do not give the details and there is no
equation in the paper that is actually wrong. The erroneous statement is that “[t]he proof follows immediately
if the functional 𝒢 [the linear combination of primary constraints] is substituted in the expression for the
Poisson bracket (3.23) […]” A simple counterexample is to be found in the toy model employed in Pitts
(2014), which can easily be parameterized. We would like to thank James Brian Pitts for suggesting this
check upon Bergmann and Brunings’s claim.
7That the Hamiltonian of GR would be a constraint even in the unparameterized formulation, the so-called
“problem of time,” was only gradually realized in the course of the 1950s.
8See, e.g., Kragh (1990, 183).
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quantum analogue, as a result of which the whole of the classical Hamiltonian
theory, which is just a structure built up on this notion, could be taken over in
all its details into quantum mechanics. […] [T]he Hamiltonian method is es-
sentially non-relativistic in form, since it marks out a particular time variable
as the canonical conjugate of the Hamiltonian function. (Dirac 1933b, 64.)

At the time, Dirac had believed that the way to proceed towards a relativistic quan-
tum theory was consequently to find a new quantization procedure based on the classical
Lagrangian, instead of the classical Hamiltonian, formalism. This was based on the re-
alization that the action function appearing in the Lagrangian formalism, that is, the time
integral of the Lagrangian itself, is a relativistic invariant. 16 years later, however, Dirac
was considerably more optimistic about the reconcilability of Hamiltonian dynamics and
relativity. The main reason for this appears to have been Dirac’s adoption of Weiss’s
parameter formalism, which had been devised by Weiss precisely in order to obtain a co-
variant generalization of classical Hamiltonian dynamics, including canonical variables
and Poisson brackets, as a starting point for the quantization of relativistic field theories.

In his Canadian lectures, Dirac went significantly beyond Weiss. Dirac emphasized
that the parameter approach would turn the original space-time coordinates into dynamical
variables in their own right. This came from a long tradition in Dirac’s thinking: Already
in the mid-1920s (Dirac 1926), and then again in 1933 (Dirac 1933a), Dirac had explored
the possibility of turning time from an evolutionary parameter into a dynamical variable in
relativistic particle mechanics, an approach which is the particle-mechanical analog of the
field-theoretical parameter formalism. As opposed to Bergmann, however, Dirac did not
place any physical expectations in the newly dynamical nature of the coordinates: To him,
this was merely a mathematical observation, one that ensured the (Lorentz) covariance of
the scheme. In his 1949 lectures, Dirac further recognized that the use of the parameter
formalism would imply the existence of constraints, including the Hamiltonian constraint,
another insight going back to his early particle-mechanical exploration of the subject. This
helped explain how the dilemma in the above quote was solved: The parameter formalism
allowed a separation between (a) the Hamiltonian function giving the total energy or en-
ergy density (which now appeared as one canonical momentum among others, conjugate
to the dynamical time coordinate) and (b) the generator of the equations of motion and
the time evolution of physical quantities (which was now the task of the constraints, or,
as Dirac had called them in 1933, the Hamiltonian equations).

It was on this basis that Dirac built up his approach to constrained dynamics. The
structure he obtained was general enough to also accommodate constraints that did not
arise from the use of parameters (and also to deal with a non-parameterized theory, in-
volving only other constraints). Dirac mentioned this fact, even though he did not refer to
any examples (back in 1933, however, he had mentioned the analogy with the constraints
arising in electrodynamics), but Pirani and Schild, who were attending the conference,
quickly picked up on the applicability of Dirac’s approach to General Relativity. Still,
it should be emphasized that to Dirac the constraints arising from the parameters were
the essential ones; additional constraints could simply be added on, as further identically
fulfilled relations between canonical coordinates and momenta. Where these additional
constraints might come from was of no concern to Dirac at the time and he did not dis-
cuss symmetry properties at all.9 This of course made Dirac’s constrained dynamics look
9Joshua Goldberg (2005) has thus labelled Dirac’s approach as algebraic (concerned with the constraints
themselves), as opposed to the group theoretical (concerned with the underlying symmetries) approach of
Bergmann (and also Rosenfeld).
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quite different from that of Bergmann, and one might spend a whole paper discussing the
differences and similarities between the two. In the following, we will just briefly focus
on the specific difference that was important for the work of Pirani and Schild, namely,
that Dirac’s formalism provided an explicit construction principle for the Hamiltonian.

In working out the properties of their constraint 𝑔, Bergmann and Brunings had, quite
naturally, considered it to be a function of canonical coordinates and momenta only, al-
lowing for derivatives of the canonical coordinates with respect to the spatial parameters
𝑢, but not allowing for velocities, that is, derivatives of the canonical coordinates with re-
spect to the time parameter 𝑡. However, the Hamiltonian density 𝐻 is quite easily written
down as a function of canonical coordinates, momenta, and velocities as

𝐻 = 𝑝𝑛 ̇𝑞𝑛 − 𝐿(𝑞𝑛, ̇𝑞𝑛) (31.1)

using Dirac’s notation, where the 𝑞𝑛 are all the canonical coordinates (including the origi-
nal space-time coordinates), the 𝑝𝑛 are the conjugate momenta and the dot denotes differ-
entiation with respect to the time parameter 𝑡. Now normally this is just an intermediate
step in constructing the canonical Hamiltonian, the next step being the elimination of the
velocities with the help of the defining equations for the momentum. This is, however,
as we have already remarked in context of Rosenfeld’s work in Chapter 17, a non-trivial
task. It was now Dirac’s innovation to consider Equation 31.1 not as an intermediate
step—basically just a construction prescription—but rather as an actual expression for the
Hamiltonian defined not on the usual phase space, but rather on a larger, 3𝑁-dimensional
(with 𝑁 the number of configuration variables) space, which also included the 𝑁 veloc-
ities as independent variables. The usual Hamiltonian was then obtained by going to a
2𝑁-dimensional subspace, where all the defining equations for the momenta (including
primary constraints) were fulfilled (this subspace of course corresponds to usual phase
space if there are no constraints).

Dirac was now able to find another expression for the Hamiltonian density as a func-
tion of coordinates, momenta, and velocities:

𝐻 = 𝑣𝑚(𝑝, 𝑞, ̇𝑞)𝜙𝑚(𝑝, 𝑞) (31.2)

where the 𝑣𝑚 are some suitable functions, the important thing being that out of each sum-
mand one of the constraints 𝜙𝑚 (the summation over 𝑚 is over all constraints, those arising
from parameterization and those intrinsic to the theory) can be factored out, the constraint
being a function of coordinates and momenta alone.

Pirani and Schild, both in Toronto at the time, Schild working with Leopold Infeld
and Pirani just having acquired his Master’s degree, attended Dirac’s Vancouver lectures
in 1949. According to Pirani’s recollections,10 Schild immediately realized the applica-
bility of Dirac’s method to the quantization of general relativity.11 Indeed, the paper of
Bergmann and Brunings had appeared just a month before Dirac’s lecture, and it is quite

10Interview by DR, 23 June 2011, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/
34463 (accessed 21 July 2017).
11Dirac had apparently not realized this and Schild brought it to his attention at the time. His wife, Winnie
Schild, told one of the authors (DS) of her husband’s pride in having achieved Dirac’s enduring respect
through this observation. More importantly, the fact that Dirac had not made the connection underlines that
it was not as obvious as Pirani recalled it to be in the interview with DR, making Schild’s previous exposure
to Bergmann and Brunings’s work all the more probable.

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/34463
https://www.aip.org/history-programs/niels-bohr-library/oral-histories/34463
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probable that Schild had seen it and then in Vancouver realized how Dirac’s method might
supply the Hamiltonian and the eighth constraint. He discussed thematter with Pirani, who
promptly agreed to go with him to Pittsburgh (where Schild had just accepted a job at the
Carnegie Institute of Technology) and become Schild’s first PhD student, the subject of
his thesis being the quantization of general relativity. Pirani’s thesis (Pirani 1951) (which
dealt, among other things, also with the inclusion of fermionic spinors) was not completed
until 1951, but Pirani and Schild had already presented first results at the APS Meeting in
NewYork (February 2–4, 1950, Schild and Pirani 1950) and submitted the paper reprinted
here in Chapter 35 on February 14. By comparing the two forms of the Hamiltonian pro-
vided by Dirac, they were quite easily able to construct the first Hamiltonian for parame-
terized GR and thereby to also explicitly identify the eight primary constraints. Bergmann
and his group were not far behind and published their Hamiltonian within the same year,
constructed using a different procedure based on finding the “quasi-inverse” of the singu-
lar Legendre matrix (P. Bergmann et al. 1950).12

The success of Pirani and Schild and the Bergmann group in constructing a Hamil-
tonian for GR was initially seen as invalidating an approach based on the notion of a free
graviton field, perturbed by its self-interaction and its interactions with other fields. Such
an attempt at quantizing gravity had been worked out in the 1949 PhD thesis of Bryce
DeWitt (né Seligman), a student of Schwinger’s, using the newly developed covariant
techniques of his supervisor (DeWitt 1949). DeWitt wrote up a paper based on his the-
sis13 in 1950 in which he duly acknowledged “the rigorous Pirani-Schild-Dirac scheme,”
having been able to read a manuscript of the Pirani-Schild paper before publication. Still,
DeWitt’s paper, which he submitted to the Physical Review, was essentially rejected by
the referee, H. P. Robertson. In his referee report,14 he stated

In view of the Pirani-Schild paper, which Seligman has seen—and remarks
on p. 3, footnote, that this should eventually be carried out in terms of their
more rigorous theory—it would seem to me better to suggest he carry out his
work in terms of their theory.

DeWitt’s thesis work was never published, and he indeed turned to working on the Pirani-
Schild formulation soon after (DeWitt 1952;DeWitt and DeWitt-Morette 1952).

However, as it turned out, the gravitational Hamiltonians of 1950 were not the last
word on quantum gravity, with only details left to be filled out. The most immediate foun-
dational reform was the abandonment of the parameter formalism by both groups within
the same year. For Bergmann the parameter formalism had carried the hope of a quantum
version of EIH, in which the space-time coordinates, which were dynamical variables in
the parameter formalism, could be interpreted as the coordinates of a quantum mechan-
ical point particle. That this will not work is rather obvious from a modern perspective:
The parameterization introduces four additional constraints which reduce the number of
dynamical degrees of freedom by exactly the number of dynamical variables one had for-
mally gained by introducing the parameters in first place. But recall that Bergmann and
Brunings had originally convinced themselves that there were no secondary constraints in
their formalism; they were simply ignoring four of the constraints actually present in the

12For more on the mathematical theory (and a brief history) of the generalized inverses of singular matrices,
see Rao and Mitra (1971). In the nomenclature adopted there, the Bergmann group was working with a (not
uniquely defined) reflexive g-inverse of the Legendre matrix.
13A manuscript is in the possession of his widow, Cecile Morette-DeWitt.
1417 May 1950, H. P. Robertson Papers, Caltech
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formalism. And indeed, Bergmann’s abandonment of the parameter formalism appears to
coincide with his realization that there were in fact additional secondary constraints.

In an interview, Joshua Goldberg placed the abandonment of the parameter formal-
ism in the summer of 1950 or 1951,15 with the published evidence clearly favoring the
former (the first parameter-free paper by the Bergmann group was already submitted in
May 1951, see Anderson and P. G. Bergmann (1951)). And in a short note to Schild, dated
16 November 1950,16 Bergmann announced that his group had discovered additional con-
straints (i.e., had discovered the secondary constraints) and was working on a proof that
there were as many additional constraints as there were primary ones. Such a proof was
supplied a year later in the non-parameterized formalism (Anderson and P. G. Bergmann
1951), and really only makes sense therein, as there are more primary than secondary
constraints in the parameter formalism. So there is strong circumstantial evidence that
Bergmann’s abandonment of the parameter formalism was closely linked with the discov-
ery of the secondary constraints, even though Bergmann never made that point explicitly
in writing. In fact, he never even retracted his “no secondaries” argument in his published
work. In the first detailed, published presentation of the parameter-free formalism (Pen-
field 1951), the new approach was merely presented as equivalent to the parameter for-
malism (for singularity-free gravitational fields), the manifest covariance of the latter thus
ensuring the covariance of the former. And only another two years later, after the question
of which were to be the actual physical observables in a constrained theory moved to the
center of Bergmann’s attention, did he go on record stating that the parameterization did
not, as he had hoped, introduce new observables (i.e., particle trajectories) into the theory
(P. G. Bergmann and Schiller 1953).

The idea of introducing particle trajectories as new quantum operators via parame-
terization had never played a prominent role for Pirani and Schild. Parameterization had
rather been a means (inherited from Dirac) for making the general covariance of the setup
manifest, as it allowed for a definition of (parameter) time that did not presuppose any
metric structure for space-time (which of course was to be a result of the field equations),
but could be defined solely through the introduction of a family of three-dimensional hy-
persurfaces in the metric-free (Pirani used the term “amorphous” in his thesis) parameter
space. When Schild received the above-mentioned note by Bergmann in November 1950,
he had not yet considered abandoning parameters.17 He and Pirani had (probably follow-
ing Bergmann and Brunings) been convinced that there were no secondary constraints,
without providing any argument for this statement. After receiving Bergmann’s note, Pi-
rani attempted to calculate the secondary constraints in the parameterized formalism. This
proved to be a formidable task, too formidable indeed: Pirani, in his thesis, merely pre-
sented some preliminary calculations in this direction, stating (p. 42) that “[t]he long and
complicated expressions which make their appearances […] led to a search for some way
of simplifying the theory.” Pirani and Schild thus followed the lead of the Bergmann

15Interview by DR and DS, 21 March 2011, https://www.aip.org/history-programs/niels-bohr-library/
oral-histories/34461 (accessed 21 July 2017).
16Alfred Schild Papers, Dolph Briscoe Center for American History, The University of Texas at Austin.
17 In the Schild Papers, there is a letter from Pirani dated 22 January 1951, in which the use of the parameter-
free formalism is already discussed as a matter of course, seemingly contradicting the above statement.
However, in this letter Pirani makes reference to a radio broadcast by Ralph Williamson, which was only
broadcast in June 1951 (Williamson 1951), strongly implying a redating of this letter to 1952, making this
an instance of the classic mistake of still dating with the old year in January.

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/34461
https://www.aip.org/history-programs/niels-bohr-library/oral-histories/34461
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group, dropping the parameters, merely viewing them as a proof of the general covariance
of the Hamiltonian formulation (Pirani 1951).18

Later work on the canonical quantization of gravity thus looked quite different from
that done in these early works of 1949/50. In particular, as pointed out by Pirani to Schild
in a letter from 4 December 1952,19 the problem of integrating over singular regions in
the action integral, which Bergmann had avoided by introducing parameters, remained.
Indeed the parameter-free formalism strongly implied entirely doing away with the idea of
particles as singularities (and thus the whole quantumEIH approach), and instead adopting
more modern, (quantum) field-theoretical descriptions of matter. Still, this early work
provided a basis for all later attempts at canonical quantization, introducing most of the
concepts and terminology regarding the appearance of constraints.
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