
Edition Open Sources
Sources 10

Alexander Blum:
Without New Difficulties: Quantum Gravity and the Crisis of the Quantum
Field Theory Program
DOI: 10.34663/9783945561317-19

In: Alexander S. Blum and Dean Rickles (eds.): Quantum Gravity in the First Half of the
Twentieth Century : A Sourcebook
Online version at https://edition-open-sources.org/sources/10/

ISBN 978-3-945561-31-7, DOI 10.34663/9783945561317-00
First published 2018 by Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Edition Open
Sources under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany Licence.
https://creativecommons.org/licenses/by-nc-sa/3.0/de/

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; de-
tailed bibliographic data are available in the Internet at http://dnb.d-nb.de



Chapter 17
Without New Difficulties: Quantum Gravity and the Crisis of the
Quantum Field Theory Program
Alexander Blum

In the years 1926–1928, immediately following the creation of matrix and wave mechan-
ics, the protagonists of this development elaborated and expanded the techniques of the
new quantum mechanics, so as to apply them to field theories.1 This work culminated in
the theory of interacting quantum electrodynamics (QED),2 published in 1929 by Werner
Heisenberg and Wolfgang Pauli (Heisenberg and Pauli 1929a). This paper, which deals
mainly with the canonical quantization of both the electromagnetic and the matter-wave
fields, famously contains a brief nod to gravitational theory, which is nowadays often
quoted jokingly due to its seemingly naive optimism:

We further note that a quantization of the gravitational field, which appears to
be necessary for physical reasons, should be also possible using a formalism
entirely equivalent to the one used here without new difficulties. (Heisenberg
and Pauli 1929a, 3)

Now this quote doesn’t sound half as optimistic if the emphasis is put on new. For
the theory of quantum electrodynamics which Heisenberg and Pauli had just constructed
was replete with difficulties. Three of these difficulties will play an essential role in our
story:

1. The theory led to divergent expressions for the energies of stationary states. Even
worse, J. Robert Oppenheimer, who was working with Pauli in Zurich at the time,
could also show that the differences between these energies (i.e., the actually ob-
served frequencies of spectral lines) came out infinite (Oppenheimer 1930).

2. In order to write down a Lorentz-invariant Lagrangian for the interacting electro-
magnetic and matter-wave fields, it was necessary to work with the electromag-
netic potentials and not just with the fields. But the Lagrangian does not contain
then a time derivative of the electric potential , so that there is no corresponding
canonical momentum variable, preventing the straightforward implementation of
canonical commutation relations.

3. The theory was not manifestly covariant due to the use of equal-time commutation
relations. These allowed for a close analogy with the canonical commutation re-
lations of non-relativistic quantum mechanics, but, by singling out time, destroyed

1For the early history of quantum field theory, see, e.g., Cini (1982); Darrigol (1982; 1986) and the first two
chapters of Schweber (1994). The difficulties of early quantum field theory are discussed in Rueger (1992).
An overview that places the development of quantum field theory in the larger context of the development of
quantum mechanics can be found in a chapter by Christoph Lehner and the author in a forthcoming volume
on the genesis of quantum mechanics.
2As opposed to free quantum electrodynamics on the one hand (Jordan and Pauli 1928), and quantum
radiation theory, i.e., a theory of transverse photons, on the other (Dirac 1927).
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manifest covariance. The Lorentz invariance of the theory thus had to be (and was)
proven in a rather roundabout manner.

All three difficulties also played an important role in early work on the quantization
of the gravitational field. I will be referring to these three difficulties as the divergence,
themomentum, and the quantization difficulty, respectively. I will begin by discussing the
momentum difficulty.

This difficulty was initially solved by Heisenberg and Pauli by adding to the La-
grangian additional terms, which contained a time derivative of and were proportional
to a parameter , which was supposed to be set to zero in the final expressions for physical
quantities. This procedure was viewed as rather artificial from the start. Heisenberg, who
had cooked up themethod,3 described it as a “very crude trick.”4 Heisenberg consequently
devised a new method for Heisenberg and Pauli’s second paper on QED (Heisenberg and
Pauli 1929b).5 This method relied on the notion of the gauge invariance of the theory
of coupled electromagnetic potentials and Dirac matter waves , which Weyl had only
recently introduced (see the preceding part), that is, the invariance under a substitution

(17.1)

where is an arbitrary space-time function. Heisenberg’s idea was the following:
The field was simply not quantized, thereby eliminating the need for a canonically
conjugate momentum variable in order to construct the canonical commutation relation.

was then simply a (c-number) function of space-time and could be set to zero, due to
the well-known underdetermination of the electromagnetic potential. This brought with
it a new difficulty, however: With set to zero, the equation of motion for (which
is simply the first Maxwell equation, or Coulomb’s law, ) no longer resulted
from the variation of the Lagrangian and the dynamical problem was underdetermined.
The equation of motion could also not simply be added as an operator identity, because
it would imply non-vanishing commutation relations between matter and electromagnetic
field operators, in contradiction with the canonical commutation relations.

Heisenberg now realized that one had not exploited the full gauge invariance by set-
ting . There was still a residual gauge symmetry, since if the function doesn’t
depend on time , the transformation 17.1 leaves unaltered. To this residual symmetry
now corresponded an operator that commutes with the Hamiltonian, that is, a conserved
physical quantity. The conserved quantity corresponding to the residual gauge symmetry
turned out to be

(17.2)

One could thus first solve the dynamical problem without the first Maxwell equation and
then pick those solutions for which , that is, for which the firstMaxwell equationwas
3See a letter from Pauli to Niels Bohr, 16 January 1929. All the Pauli letters from the 1920s are reprinted
in Hermann, Meyenn, and Weisskopf (1979). All translations are by me.
4Heisenberg to Jordan, 22 January 1929, Archive for the History of Quantum Physics, MF 18, Section
002–024.
5See also a letter from Heisenberg to Pauli, 20 July 1929.
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fulfilled at some initial time. There was thus a Nebenbedingung (subsidiary condition) on
the initial quantum state , which had to fulfill the equation . Since commutes
with the Hamiltonian, this condition on the initial state would propagate, and the first
Maxwell equation would always be fulfilled, without actually being an operator identity.

The central difficulty with this new method was the apparent lack of Lorentz invari-
ance: There was now no commutation relation for the zero component of the electromag-
netic potential four-vector, and hence the commutation relations were no longer covariant
—this was in addition to the difficulty of the equal-time commutators, that is, the quan-
tization difficulty. Heisenberg and Pauli convinced themselves that “all statements about
gauge invariant quantities […] fulfill the demand of relativistic invariance,” but the proof
they presented was highly problematic.6

This was the state of affairs for the momentum difficulty, when Pauli finally turned
to the quantization of gravity. The immediate stimulus appears to have been the reading
of Weyl’s paper on the interacting theory of Dirac matter waves, electromagnetic poten-
tials and the gravitational field (Chapter 12).7 He dismissed Weyl’s attempt to solve the
problem of the negative energy states by using masslessWeyl two-spinors instead of Dirac
spinors, especially because he did not share Weyl’s hope that gravitational effects might
be able to generate the mass term:

The hope of finding a replacement for the mass term in gravitational theory
appears illusory to me; the gravitational effects will always be much too small
numerically. (Hermann, Meyenn, and Weisskopf 1979, 519)

But Pauli realized that Weyl’s general scheme of coupling spinors to a curved space-time
metric, by expressing the latter in terms of tetrads, would also work for regular, massive
Dirac four-spinors.8 Reformulated in this manner, Weyl’s field theory provided a natural
extension of the field theory of interacting matter and electromagnetic waves that Heisen-
berg and Pauli had quantized for their QED. It thereby provided the obvious starting point
for extending and completing their work by also including the gravitational field. Pauli
concluded his remarks on Weyl’s paper by stating:

What now interests me most, is the question of how to quantize the e [the
tetrads] themselves in your gravitational theory. (Hermann, Meyenn, and
Weisskopf 1979, 520)

This was the question which he set his assistant Léon Rosenfeld. Rosenfeld soon
discovered that one encountered problems akin to the momentum difficulty of QED.9 For
example, the canonical momenta for the time-components of the four tetrad basis vectors
identically vanished. In further pursuing this question, Rosenfeld obtained several inter-
esting results, which he published in a lengthy paper in 1930 (Chapter 18).10 First of all,

6Dirac in a letter to Rosenfeld from 6 May 1932 (Niels Bohr Archive, Copenhagen) (under)stated that he
found it “difficult to understand,” and Rosenfeld concurred on 10 May (Dirac Papers, Churchill College,
Cambridge) that Dirac was “right in not understanding” the “highly doubtful sentence” with which Heisen-
berg and Pauli concluded their proof.
7Letter from Pauli to Weyl, 26 August 1929.
8This is of course what Fock had already done. But Pauli was not aware of Fock’s work until somewhat
later. See a letter to Ehrenfest from 29 September 1929.
9Letter from Pauli to Jordan, 30 November 1929.
10For a detailed discussion of this work, in particular with regard to its relation with later work on constrained
Hamiltonian dynamics, see Salisbury (2009).
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he was able to demonstrate in general that the momentum-type difficulties were the result
of the invariance of the Lagrangian with regard to certain groups, the gauge group for the
case of electrodynamics, the group of general coordinate transformations for general rela-
tivity, and the local Lorentz symmetry of the tetrad formulation. He then went on to devise
a general method for dealing with such difficulties, a method which also managed to by-
pass the difficulties of Lorentz covariance encountered in the (second) Heisenberg-Pauli
scheme.

In order to sketch Rosenfeld’s method, I will focus on the simple case of QED, which
is the only example he really worked out to the end. The general idea was to also introduce
canonical commutation relations for, and thereby to quantize, the electric potential :
Rosenfeld simply assumed that there existed a momentum operator that did in fact
obey the canonical commutation relation with the electric potential. In order to do this
two points needed to be addressed.

First, this meant that the Hamiltonian would contain a term . In order to have
the Hamiltonian expressed solely in terms of the canonical variables, one would have to
express in terms of the canonical momenta (and the canonical coordinates, that is, the
components of the potential). But the original Lagrangian did not depend on , and
consequently did not show up in the expressions relating the time derivatives of the
field and the canonical momenta. This implied that could be an arbitrary function of
space and time without contradicting the defining equations for the canonical momenta.
Rosenfeld thus set in the Hamiltonian equal to an arbitrary function , which then
consequently showed up in the equations of motion for the four-potential. In particular
the equation of motion for the electric potential was simply of the form , ensuring
the self-consistency of the approach. A specification of then corresponded to choosing
a gauge.

The second point was that one still needed to take account of the fact that the mo-
mentum conjugate to the electric potential was actually zero. Rosenfeld introduced a
Heisenberg-Pauli type Nebenbedingung on the state, demanding that . And
in order to have this condition propagate in time, an additional condition needed to be
imposed

(17.3)

One thus obtained the same Nebenbedingung that Heisenberg and Pauli had imposed,
ensuring the validity of Coulomb’s law. No further conditions were necessary, since
was a constant, as Heisenberg and Pauli had already shown.

Since Rosenfeld’s scheme was essentially equivalent to the Heisenberg-Pauli method
for the specific choice (although it should be noted that it was not actually necessary
to specify at all), Rosenfeld’s work in the context of QED could simply be viewed as a
proof of the covariance of that method, and this is how he later presented it,11 resorting to
the simpler Heisenberg-Pauli method for actual calculations (Rosenfeld 1932).

In any case, it was a whole different approach that came to be the standard method
in the QED of the 1930s and 1940s, due to Enrico Fermi, which was based on taking the
(Lorenz) gauge condition (as opposed to Coulomb’s law) and its time derivative as condi-

11Letter to Dirac, 21 May 1932, Dirac Papers, Churchill College, Cambridge.
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tions on the wave function (Fermi 1932).12 It involved the use of a modified Lagrangian
that was not gauge invariant and only returned the Maxwell equations if the Lorenz gauge
was imposed. Rosenfeld argued against the Fermi approach in his paper, on account of its
lacking gauge covariance, demonstrating that his own method was in fact gauge covari-
ant. But this was not a very strong argument at the time, and also Rosenfeld could field
no arguments as to why one should attach much weight to gauge covariance in the first
place.

How then did Rosenfeld’s method fare in the context of gravitation? It did indeed
prove applicable, in particular because it was generalizable to the case where the con-
straints on the canonical momenta were more complicated than the mere vanishing of
some of the components, as was the case for the constraints arising from the local Lorentz
covariance of the tetrad formalism. But he stopped short of actually constructing a canon-
ical Hamiltonian for the Weyl-Fock field theory. For this, he would have had to solve the
equations defining the canonical momenta for the time derivatives of the fields (i.e., of the
tetrads), in order to end up with a Hamiltonian that only contained canonical coordinates
and momenta, as well as the arbitrary functions of the type .

Why did Rosenfeld not do this? This question remains unanswered. Years later,
Pauli remarked that Rosenfeld’s work was “not satisfactory in all aspects, because he had
to introduce certain additional conditions, which no one could really understand.”13 It
is entirely unclear, however, what Pauli was referring to. Rosenfeld’s work remained
for the next two decades an anomaly, until the late 1940s, when the systematic study of
constrained Hamiltonian dynamics picked up steam, and several of Rosenfeld’s results
were re-discovered, as will be discussed in the final part of this book. One additional,
simple result of Rosenfeld’s, unrelated to the momentum difficulty, has stood the test of
time: The necessity of quantizing the gravitational field with commutators, that is, the
realization that gravitons must be bosons. Ten years before Pauli’s formulation of the
spin-statistics theorem, this was a non-trivial result.

One thing is certain: Solving the momentum relations for the time derivatives of the
fields is a complicated business. This would not be the last instance of physicists con-
vincing themselves that methods from QED also worked for gravity in principle, without
filling in the details. In any case, it turned out to be unnecessary for Rosenfeld’s second
work on the quantum theory of gravity, which he completed in the same year (Chapter 19).
This second paper, much more than the first, which certainly started out as an attempt to
quantize gravity, is an attempt to better understand the difficulties of QED by studying
whether similar difficulties appeared in other quantum field theories. The difficulty in
question here was the first difficulty mentioned above, the divergence difficulty, to which
we will now turn.

It was initially unclear whether the divergence of the self-energy of the electron in
QED was simply an inheritance from the classical theory, where it was well-known that
the notion of a point electron was highly problematic, due to the infinite electromagnetic
mass associated with such an object. Supposedly Heisenberg had suggested14 that one

12It should be noted that Fermi himself actually gave no indications as to how exactly the gauge condition
should be interpreted in his original work (Fermi 1929). It was only Heisenberg and Pauli who interpreted it
as a condition on the state, akin to their own Nebenbedingung, an interpretation which Fermi then adopted.
13…nicht in jeder Hinsicht befriedigend war, da er gewisse zusätzliche Bedingungen einführen musste, die
niemand richtig verstehen konnte. Letter to Oskar Klein, 25 January 1955, reprinted in Meyenn (2001).
14When and where is uncertain. Pauli in a letter to Rosenfeld (19 September 1930, but reprinted in Meyenn
(1993)) speculates that it might have been during discussions in Copenhagen, but Heisenberg did not actually
attend the 1929 spring conference in Copenhagen (8–15 April, see the timeline in Hermann, Meyenn, and
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should study the case of the gravitational self-energy of the photon, since there were no
singularities in the corresponding classical theory of an electromagnetic wave interacting
with the gravitational field. In any case, Pauli egged Rosenfeld on to pursue this prob-
lem.15

The electromagnetic self-energy of the electron had been calculated perturbatively,
expanding in terms of the coupling constant, the electron charge . The divergent ex-
pression then arose at second order in perturbation theory. Consequently, Rosenfeld per-
formed his calculation of the gravitational self-energy of the photon in the approximation
of a weak gravitational field. Such an approximation had, of course, been worked out
by Einstein immediately after the formulation of general relativity (see the first part of
this book). Einstein had started from the assumptions that the deviations from the flat
space-time metric were numerically small (compared to the elements of the flat space-
time metric itself, which are of order 1). Rosenfeld now factored out a co-efficient , the
square root of Einstein’s gravitational constant, the deviations from the flat space-time
metric thus now being of the form , Rosenfeld’s now being a dimensionful quantity.
This explicitly made Einstein’s approximation equivalent to an expansion in terms of the
gravitational coupling constant.

As Einstein had further remarked, solving the field equations of general relativity
in this approximation was basically equivalent to calculating retarded potentials in elec-
trodynamics. This also meant that all the techniques developed for QED could be taken
over to the quantization of (linearized) gravity in a very straightforward manner. In par-
ticular, there was no need for Rosenfeld’s new method of dealing with the momentum
difficulty.16 The Fermi method could be taken over from QED and applied directly to
gravity, the Lorenz gauge condition being replaced by the analogous coordinate condition
imposed by Einstein

(17.4)

where is the trace-reverse of . Following Fermi, Rosenfeld constructed a La-
grangian which was not simply the linearized Einstein-Hilbert Lagrangian, and hence
not even approximately invariant under general coordinate transformations. The most
straightforward way to arrive at the Rosenfeld Lagrangian is to linearize the first-order
Einstein-Hilbert Lagrangian, impose the above coordinate condition and then drop a total
divergence. Rosenfeld presented no derivation of his Lagrangian, the only important point
being that it returned the correct linearized field equations.

In this framework, Rosenfeld then calculated (to second order in ) the gravitational
field energy in the absence of free gravitons, where the operator can be expressed solely
in terms of the electromagnetic field operators. He obtained two divergent terms, one
constant and one proportional to the number of photons. The second term was interpreted
as the gravitational field energy of a photon, and its divergent nature was subsequently

Weisskopf (1979)), since he was on his world tour (from which he only returned in November, see the
timeline in Cassidy (1992)).
15Interview of Léon Rosenfeld by Thomas Kuhn and John Heilbron, Niels Bohr Library and
Archives, American Institute of Physics, College Park, MD, USA, https://www.aip.org/history-programs/
niels-bohr-library/oral-histories/4847-2 (accessed 21 July 2017).
16It of course also needs to be noted that there was no need to introduce the tetrads in this case, since no
spinorial matter was involved.

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4847-2
https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4847-2
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cited as proof for the quantum nature of the self-energy divergence, independent of the
presence of singularities in the corresponding classical theory.

There remained the suspicion that this divergent energy was merely the coupling of
the gravitational field to the infinite zero-point energy of the electromagnetic field. This
question was investigated soon after by Jacques Solomon, who redid Rosenfeld’s calcula-
tion after first eliminating the zero-point energy in the Hamiltonian of the electromagnetic
field by imposing normal ordering on the annihilation and creation operators (Solomon
1931). Solomon showed that while the constant divergent term was eliminated in this
manner, the photon self-energy remained divergent. But he had only imposed normal or-
dering on the level of the electromagnetic Hamiltonian and this normal ordering did not
survive when calculating the energy of the gravitational field. I therefore think that it can
still be argued that Rosenfeld’s divergence was merely the result of the coupling to the
zero-point energy.

In any case, when Rosenfeld’s calculation was redone again by Bryce deWitt (né
Seligman) in his unpublished PhD thesis (DeWitt 1949), now using modern covariant
techniques, he obtained a vanishing photon self-energy, as should be expected from con-
siderations of gauge invariance alone. DeWitt gave no real argument as to where Rosen-
feld had gone wrong, which is quite understandable considering that almost all the calcu-
lations from the 1930s were considered obsolete when renormalized quantum field theory
was developed in the late 1940s.

The question of the photon self-energy aside, Rosenfeldwas still interested in the gen-
eral question of the quantization of gravity and supplemented his paper with a section on
the quantization of the linearized gravitational field also for the case of free gravitons. His
treatment was, however, quite sketchy. Bypassing the canonical commutation relations,
Rosenfeld went straight to an explicit expression for the operator in terms of gravi-
ton annihilation and creation operators, by expanding in terms of transverse gravitational
wave solutions of the free field equation. These transverse waves had been identified by
Einstein as the only physical gravitational waves, carrying energy and propagating with
the speed of light. Rosenfeld concluded with a brief look at graviton-photon scattering in
this linear quantum theory of gravity.

The quantization of linearized GR wasn’t worked out in detail until 6 years later, in
the PhD work of Soviet physicist Matvei Bronstein (Chapter 20).17 It is unclear whether
he was aware of Rosenfeld’s work,18 but he did not really need to build on it. Bronstein
had an independent program of formulating linearized GR as close to electrodynamics as
possible, with treated as a regular field in flat Minkowski space-time (as opposed to
as a deviation from the flat space-time metric). He could then straightforwardly apply the
canonical, equal-time field quantization procedure developed by Heisenberg and Pauli for
QED (along with the Fermi method for dealing with the coordinate condition, which Bron-
stein now explicitly identified as a gauge condition) to all components of the linearized
gravitational field, not only to those that corresponded to freely propagating waves.

These additional components became important when treating the interaction with
matter. Here, Bronstein built on Fock’s work, expressing Fock’s generally relativistic
Dirac equation, and in particular the tetrads, in terms of the . Bronstein could thereby
not only calculate the emission and absorption coefficients for transverse gravitons, but

17On Bronstein’s life and scientific work, see Gorelik and Frenkel (1994).
18 He was certainly aware of Rosenfeld’s first paper: During Bronstein’s thesis defense (the protocol is
reprinted in Kobzarev (1985, 317–320)), Igor Tamm recommended that he make reference to it, which
he did in the published Russian paper. Rosenfeld’s second paper on linearized gravity is, however, never
mentioned.
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also show how the non-transverse gravitons led to a Newtonian gravitational interaction
between electrons, in the same way that the longitudinal (and time-like) photons of QED
led to the Coulomb interaction.

But Bronstein’s work is less known for his detailed treatment of the quantum theory of
linearized gravity, and more for his musings on the full quantum theory of gravity. Bron-
stein transferred Bohr and Rosenfeld’s analysis of the measurability of field quantities in
QED (Bohr and Rosenfeld 1933) to quantum gravity. Bohr and Rosenfeld had concluded
that there were no further restrictions on the measurability of the electromagnetic field be-
side those arising from the canonical uncertainty relations, just as in quantum mechanics.
This conclusion had centrally rested on the assumption that the test body used to measure
the field was macroscopic (i.e., its atomistic nature could be disregarded) and could be
given an arbitrarily high charge density. Bronstein argued that, although the close relation
between QED and the quantum theory of gravity allowed adapting almost the entire Bohr-
Rosenfeld analysis, the final conclusion would be different, because general relativity did
not allow for arbitrarily dense bodies. Rather, there was a fundamental limit from the fact
that a body could not become smaller than its gravitational (Schwarzschild) radius. There
were thus absolute limits on the measurability of the gravitational field and a quantum
theory of gravity would require major conceptual changes.

Now Bronstein’s reasoning clearly shows great physical intuition. He was the first
to realize the essential difficulties inherent in constructing a quantum theory of gravity
and that such a theory was not to be had without fundamental conceptual innovations. His
argument is fielded to this day as an elementary demonstration of the problem that is quan-
tum gravity. Why then was Bronstein’s argument hardly received by his contemporaries?
To understand why it didn’t make much of a splash at the time, one needs to look at its
weaknesses in somewhat more detail.

One objection was already raised at Bronstein’s thesis defense by Wladimir Fock:19
The absence of a fundamental restriction on the charge density was hardly a desirable fea-
ture of quantum electrodynamics. Rather, it allowed for a theory such as QED with point
charges that had an apparently infinite charge density, resulting in the divergence diffi-
culties discussed above. Physicists at the time were thus much more inclined to believe
that revisions in the concepts of space and time would come from a reformed (quantum)
electrodynamics, where a quantity of the order of the classical electron radius would play
an essential role. The radical changes that Bronstein was envisioning were thus expected
to come in at much larger length scales. It was only when the difficulties of QED (and
then also of nuclear physics) had been solved—without radical changes in the underlying
space-time theory—that Bronstein’s arguments could be viewed as convincing.20

But there is a more intrinsic difficulty in Bronstein’s argument as well. The aim of
the Bohr-Rosenfeld analysis had been to take the established mathematical framework of
QED and prove that it was internally consistent, that is, that there were no fundamental
limitations on the observability of the electromagnetic field components, which would
have been in contradiction with the initial choice of these components as the dynamical
(quantum) variables. The Bohr-Rosenfeld analysis was thus a procedure to be applied
to an already formulated quantum theory, in order to see whether it contained inherent

19The protocol of the defense has been published in Russian, see Footnote 18.
20Gorelik and Frenkel are somewhat dismissive of Fock’s objection, because they focus too narrowly on
a specific attempt at introducing the electron radius into electrodynamics, the Born-Infeld theory, as did
Bronstein in his reply to Fock. However, Fock explicitly stated that “the generalzation [of electrodynamics]
to a non-linear theory is only beginning” (Kobzarev 1985, 318). Hewas thus referring to the general program
and not merely to its specific, and problematic, implementation by Born and Infeld.



17. Quantum Gravity and QFT 263

contradictions. Consequently, in the original Russian article based on his thesis (Bronstein
1936), Bronstein applied this analysis to his linearized quantum gravity (which was a fully
formulated quantum field theory), and not to an as yet hypothetical full quantum theory of
gravity. He then voiced the hope that his argument would also carry over to the full theory,
even though his analysis could not be applied to it, since it had not yet been formulated.

Somewhere between writing up his thesis and publishing the German-language ar-
ticle reprinted here, Bronstein must have realized that this argument was fundamentally
flawed. There was nothing in the classical, linearized theory that prevented a body from
being smaller than its gravitational radius. And so the linearized quantum theory was just
as consistent as QED. In the German article, he thus presented the Bohr-Rosenfeld ar-
gument as an argument against the coherence of a quantum field theory based on the full
non-linear theory of gravity, disregarding the obvious logical difficulty of showing the
inconsistency of a theory that didn’t even exist yet.

This criticism of Bronstein’s argument was raised by Jacques Solomon (Chapter 21),
but not without bringing forth a further argument against the possibility of constructing
a quantum field theory based on the full non-linear theory.21 Solomon’s argument was
based on a recent proof by Nathan Rosen on the non-existence of non-singular plane wave
solutions in full GR (Rosen 1937).22 Now, all quantum field theories of the time were
based on an expansion of the field quantities in plane waves. Even if Heisenberg and
Pauli’s starting point had been commutation relations for the field quantities themselves, as
soon as they went to the level of representing these field quantities as operators on a Hilbert
space, they had, as they grudgingly admitted, no choice but to expand them in plane wave
solutions of the free field equations and treat the expansion coefficients as annihilation
and creation operators on occupation number space. From the absence of plane wave
solutions, Solomon concluded that the present formalism of field quantization was not
compatible with the non-linear theory of gravitation, a weaker claim than Bronstein’s, but
one that found at least one interested listener in Pauli, as we shall see later.

But of course both Bronstein’s and Solomon’s thoughts on the difficulties of the non-
linear quantum theory of gravity could be regarded as nitpicking, as long as the difficulties
of QED (and thereby also of the quantum theory of linearized gravity) remained unsolved.
The attempts to solve these difficulties, in as far as they were difficulties of quantum field
theory in general, of course also impacted the pursuit of quantum gravity. It is well-known
that themost fundamental difficulty of QED, the divergence difficulty, was not solved until
the late 1940s. But progress was being made already in the 1930s on lesser difficulties,
in particular on the lack of manifest covariance due to the use of equal time commutators,
what I have called the quantization difficulty. In the last part of this essay, I will focus on
this third and final difficulty.

While certainly not the most pressing difficulty at the time, there were enough physi-
cists who believed that formulating quantum theory in a more overtly relativistic manner
was a worthwhile endeavor. Two important relativistic quantization procedures were de-
vised in order to replace equal-time commutators in the first half of the twentieth century.23
In both cases, Paul Dirac played an essential role. The union of relativity and quantum
theory was a leitmotif in his work from the very start, when he attempted to make Heisen-

21In the secondary literature, e.g. in Stachel (1999), Solomon’s and Bronstein’s arguments have in general
been lumped together.
22Rosen’s conditions were later seen as too strict, since he was also ruling out mere coordinate singularities
(Bondi, Pirani, and Robinson 1959).
23Not counting Feynman’s path integral, which was not applied to the case of gravitation until the mid-1950s,
see in particular Misner (1957).
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berg’s matrix mechanics relativistic by turning time into a non-commuting matrix (Dirac
1926). This was followed by the Dirac equation in 1928 (Dirac 1928) and then by several
hugely influential papers in 1932/33, in which he laid the foundations for several new,
relativistically invariant quantization techniques. We begin by discussing his 1933 paper
on “The Lagrangian in Quantum Mechanics” (Dirac 1933).

Dirac’s general idea was to formulate quantummechanics not in terms of states (wave
functions) propagating in time, but in terms of transition amplitudes from the state at one
time to the state at a later time. Dirac called these transition amplitudes “transformation
functions,” since he conceptualized them as generating canonical transformations from
the canonical coordinates at one time to those at a later time. In the final section, he also
hinted at how to generalize this idea to quantum field theory, where the initial and final
times would be replaced by an arbitrary (not necessarily space-like) three-dimensional
hypersurface of space-time, which formed the integration boundary of the classical action.
He dubbed the field theoretic amplitudes relating the canonical (field) coordinate values
on different points on this hypersurface24“generalized transformation functions.” Dirac’s
ideas, however, remained very vague and were not worked out in any detail by him.

Dirac’s idea was taken up by Paul Weiss,25 who realized that the procedure of replac-
ing initial and final times by general three-dimensional boundary hypersurfaces might
also be applicable to the canonical quantization procedure (Weiss 1936). At first sight,
the canonical quantization procedure seemed to rest essentially on the singling out of
time, since the momentum canonically conjugate to a field variable appearing in the
Lagrangian was defined as . This was one of the reasons why Dirac had based his
sketch on the Lagrangian formalism, where the canonical momenta do not enter. Weiss
now noted that the canonical momentum could also be defined in another way. If one
reads the definition of the canonical momentum as the time component of the four-vector

, then this can be generalized by taking the canonical momentum as the component
of the four-vector orthogonal to the hypersurface forming the integration boundary of the
action, on which the values of the field variables are fixed.

Weiss initially, like Dirac, took the boundary hypersurface to be closed. So, while one
could locally determine the direction perpendicular to the surface and describe points
on the surface by three parameters , this coordinate system (dubbed “natural” by Weiss)
could not be regular throughout space-time. Still, one could write down commutators for
the field operators, which were exactly of the form of the Heisenberg-Pauli equal-time
commutators, except that the arguments of the field operators were now not the three
spatial coordinates, but rather the three surface parameters . Further, a Hamiltonian
could be constructed in the usual fashion, using the generalized canonical momenta, and
be shown to generate the “time evolution” (i.e., the evolution for increasing ) of the field
operators.

In his second, and most influential paper (Chapter 22) , Weiss could show that the
generalization of the commutation relations need not necessarily occur only at the quan-
tum level, where it smacked of an ad-hoc modification of the well-established canonical
quantization procedure. Instead, he could demonstrate that his generalized commutation
relations corresponded already at the classical level to generalized Poisson brackets, and
that his method was thus a straightforward generalization of the usual canonical quantiza-
tion method.

24They should not be called transition amplitudes, since this would imply a notion of initial and final state.
Maybe “correlation amplitudes” would be a good name.
25For a detailed discussion of Weiss’s life and work, see Rickles and Blum (2015).
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This reconceptualization brought with it a slight modification of the original method.
If the generalized Poisson brackets are supposed to be invariant under canonical trans-
formations, in particular under time evolution, as are their point-mechanical counterparts,
they can only sensibly be defined on some initial space-like hypersurface (on which then
the values of both the field variables and the canonical momenta are given). Weiss thus
dropped his original approach of having the commutation relations defined on an entire
closed hypersurface, and replaced it with commutation relations on some (initial) space-
like hypersurface, which corresponded to the classical, generalized Poisson bracket. This
quantization procedure provided a covariant generalization of the equal-time commuta-
tors that, however, still stuck closely to the canonical scheme. We will discuss its further
use in the last part of this book, which discusses the beginnings of what would come to be
known as the canonical quantization approach to quantum gravity.

The other quantization procedure that went beyond the Heisenberg-Pauli equal-time
commutators was not a direct generalization of the canonical quantization procedure, as
Weiss’s method was. At its core were not the commutation relations between canonically
conjugate field variables, but rather the commutation relations between two field variables
at arbitrary different points in space-time. Such covariant commutators had first been used
in 1928 by Jordan and Pauli for their quantization of the free electromagnetic field (Jordan
and Pauli 1928). They were constructed by expanding the electromagnetic field variables
in terms not of time-independent spatial modes, but in terms of time-dependent, propa-
gating plane waves, which were solutions of the (free) equations of motion. Imposing the
usual annihilation-creation operator commutation relations on the expansion coefficients,
and then re-summing, the covariant commutation relations were obtained.

Since the construction was based on an expansion in terms of solutions of the wave
equation, the commutation relations were automatically compatible with the equations of
motion, a necessary requirement for any equation relating the field at two time-like (or,
for the case of electrodynamics more importantly, light-like) separated points. Indeed,
the commutators themselves actually had to be (singular) solutions of the equations of
motion. This immediately became intractable once one was dealing with interacting fields
and non-linear equations of motion, which is why one year later, Pauli reverted to the use
of equal-time commutators.

Covariant commutation relations were brought back into the game by Dirac in 1932.
In an attempt to relaunch QED, he had effectively reconstructed Heisenberg-Pauli quan-
tum field theory, only now in the interaction representation (Dirac 1932). Dirac was much
ridiculed by Pauli for having merely produced an equivalent theory, despite his grandilo-
quent claims to the contrary. In a letter to Dirac of 11 September 1932,26 Pauli wrote:

Your remarks on quantum electrodynamics […] were—to put it mildly—
certainly no masterpiece. After a confused introduction, consisting of sen-
tences that were only halfway understandable because theywere only halfway
understood, you finally arrive at results for a simplified, one-dimensional ex-
ample that are identical with those obtained by applying the formalism of
Heisenberg and myself to this example. (The identity is immediately rec-
ognizable and was then calculated in too complicated a manner by Rosen-
feld.) This conclusion of your work stands in contradiction to the more or
less clearly voiced claims in the introduction that you would somehow be
able to make a better quantum electrodynamics than Heisenberg and myself.
(Hermann, Meyenn, and Weisskopf 1985, 115)

26All Pauli letters from the 1930s are reprinted in Hermann, Meyenn, and Weisskopf (1985).
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But when Dirac, together with Vladimir Fock and Boris Podolsky, actually applied
his interaction representation formulation of quantum field theory to the full electrodynam-
ics (Dirac, Fock, and Podolsky 1932), and not just to the toy example of the first paper,
Pauli realized that it had a huge advantage: All the non-trivial dynamics due to the interac-
tion between chargedmatter and electromagnetic field were relegated to the time evolution
of the state vector. In other words: Also the second inhomogeneousMaxwell equation, the
Ampère-Maxwell law, was satisfied only through the action of the field operators on the
wave function and not as an operator identity. This implied that the electromagnetic field
operators still obeyed the free field equations and consequently the covariant commutation
relations of Jordan and Pauli. On 2 June 1933, Pauli wrote to Heisenberg:

As time goes by, I find myself liking the work of Dirac, Fock and Podolsky
more and more. It is funny that there the commutation relations of vacuum
electrodynamics do not change when particles are present, even for .
(Hermann, Meyenn, and Weisskopf 1985, 167)

But the method of quantizing by imposing covariant commutation relations was still
an isolated technique, applied only to the Maxwell field, far-removed from the generality
of the canonical quantization approach, which could be applied to any classical field theory
given in Lagrangian or Hamiltonian form. It was extended in 1938 by Stueckelberg to
encompass massive scalar fields, again by explicitly expanding the field operators in terms
of solutions of the wave equation (in this case the Klein Gordon equation) (Stückelberg
1938a), and then also to massive vector (Proca) fields (Stückelberg 1938b). In 1939,
finally, Markus Fierz gave a general expression for the covariant commutation relations
for fields with arbitrary spin (Fierz 1939).27 The covariant quantization method thereby
became a full-fledged quantization method in its own right, applicable to any Lorentz-
covariant field theory.

What did this mean for the quantization of gravity? General Relativity was, of course,
not a Lorentz-invariant field theory, but as we have seen, the linearized theory could be
thought of in this manner. And indeed, Fierz together with Pauli could show that the
linearized gravitational field fit into Fierz’s scheme, namely as a massless spin 2 field
(Chapter 23).

This was a major conceptual change: Bronstein (and Rosenfeld) had started from the
full theory of general relativity and obtained a Lorentz-covariant field theory as an ap-
proximation. Pauli and Fierz now showed that one could construct the field theory of lin-
earized gravity equally well without any reference to general relativity: it was the unique
Lorentz-covariant field theory of a massless spin 2 field. Also the transformation prop-
erties of the metric perturbations arose, without any reference to general coordinate
transformations, as the gauge transformation properties of a massless field, a straightfor-
ward generalization of electrodynamics.

Initially, of course, this change was hardly consequential: The quantum field theory
of linearized gravity had already been worked out, and neither the use of covariant quanti-
zation methods, nor the reconceptualization in terms of a spin 2 field made any difference
to, say, Bronstein’s formulation. But it would eventually lead to a new way of thinking
about the quantum theory of non-linear gravity. Pauli, when recapitulating his work with
Fierz in his manuscript for the 1939 Solvay conference (which never took place due to the
outbreak of World War II, but is reprinted in Meyenn (1993)), was still quite pessimistic

27The context of these works is the discovery of the putative Yukawa meson in 1937, see Blum (2014).
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concerning the prospects for the non-linear theory. In particular he cited Solomon’s argu-
ment, but with an interesting twist:

It is certainly a limitation of the quantum theoretical side of these considera-
tions that one here contents oneself with the approximation in which the gen-
erally relativistic field equations are linear. This limitation is intimately con-
nected with the well-known divergence difficulties of field theory. (Meyenn
1993, 901)

No further explanation of this connection is given, but I would suggest the following
reading: In quantum electrodynamics it is the non-linear terms, that is, the terms coupling
the electromagnetic field to the charged current of the electrons, that lead to the divergence
difficulties. Pauli’s connection of the non-linearities of GRwith the divergence difficulties
of QED thus offered an entirely new way to look at these non-linearities: For Solomon,
these were terms arising in a higher approximation to the full theory, spoiling the usual
quantum field theoretical approach by eliminating the possibility of plane wave solutions.
In contrast, the non-linear terms could now be considered as interaction terms, added on to
the Lagrangian for the free spin 2 field, just like the interaction terms of QED were added
on to the free field Lagrangians, with the sole difference that one was now talking about
self-interactions of a single field.

As long as the divergence difficulties of QED remained unresolved, this hardly made
a difference. But when covariant renormalization was developed in the late 1940s, it
seemed plausible that the same techniques might also be used for the non-linear the-
ory. By using the interaction representation, one could quantize the gravitational field
in the same manner as the electromagnetic field, by separating the free spin 2 quantum
(which had plane wave solutions, thereby circumventing Solomon’s objection) from its
self-interaction. The self-interaction (as well as the interactions with the matter fields)
could then be treated in the same manner as the interactions of QED, possible divergences
being absorbed into the properties of the free field. Thus the program of covariant quanti-
zation was born, which, however, took off only somewhat after the period covered in this
book. We thus see how the two major programs for the quantization of gravity, canon-
ical and covariant quantization,28 had their origins in the 1930s, in two attempts to get
over the quantization difficulty of QED with, at this early stage, only weak and incidental
connections to the specific problem of quantum gravity.
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